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The linear and nonlinear properties of ion-temperature-gradient-driven (ITG) turbulence

with adiabatic electrons are modeled for axisymmetric configurations for a broad range

of triangularities δ , both negative and positive. Peak linear growth rates decrease with

negative δ but increase and shift toward a finite radial wavenumber kx with positive δ .

The growth-rate spectrum broadens as a function of kx with negative δ and significantly

narrows with positive δ . The effect of triangularity on linear instability properties can be

explained through its impact on magnetic polarization and curvature. Nonlinear heat flux

is weakly dependent on triangularity for |δ | ≤ 0.5, decreasing significantly with extreme

δ , regardless of sign. Zonal modes play an important role in nonlinear saturation in the

configurations studied, and artificially suppressing zonal modes increased nonlinear heat

flux by a factor of about four for negative δ , increasing with positive δ by almost a factor

of 20. Proxies for zonal-flow damping and drive suggest that zonal flows are enhanced with

increasing positive δ .
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I. INTRODUCTION

Ion-scale drift-wave-driven turbulence is considered to be an important source of heat and par-

ticle transport in fusion experiments1. Although plasma shaping is known to substantially im-

pact magnetohydronamic (MHD) stability properties2, there is no complete picture of how plasma

shaping affects drift-wave-driven turbulence. For axisymmetric configurations, larger values of

elongation κ , a parameterization of how ellipsoidal the cross-section of a magnetic flux surface is

in the vertical direction, is known to have a stabilizing effect on ion temperature gradient (ITG)3,4

and trapped electron (TEM)5 drift-wave modes6–8. The effect of the triangularity δ—particularly

negative triangularity—of axisymmetric configurations on drift-wave-driven turbulence is not fully

understood. The present work seeks to understand the physics of changes to confinement produced

by negative triangularity by studying an ITG turbulence regime, where saturation mechanisms are

well-understood, include extremes in triangularity as a first assessment of whether the common

approach of focusing on moderate values of δ may overlook interesting and potentially benefi-

cial regimes, and determine if and when (quasi-)linear physics cannot capture nonlinear trends,

potentially revealing changes to saturation efficiency.

The DIII-D and TCV experiments have explored negative triangularity configurations, achiev-

ing improved confinement and lower fluctuation levels relative to their positive triangularity

counterparts9–14. These observations have been reproduced in gyrokinetic and gyrofluid simulations14–19.

The largest range of triangularities studied in the experiments was −0.65 ≤ δLCFS ≤ 0.55 at the

last closed flux surface (LCFS)11, the drift-wave stability properties of which were studied in

Ref.17. Recent studies based on linear and nonlinear simulations commonly compare equilibria

similar to the experimental regimes, with |δLCFS|≲ 0.416–18. In the present work, a broader range

of triangularities is pursued to enable identification of possible new turbulence regimes. Note that

experimental scenarios of δ = 0.8 and δ = −0.9 have been considered in the past20, and TCV is

designed for −0.7 ≤ δ ≤ 121. These linear and nonlinear simulations focused on TEM-dominant

regimes, however ITGs were also present.

Linear electrostatic gyrokinetic studies have found positive triangularity to be marginally desta-

bilizing for ITGs at low elongation (typically 1 ≤ κ ≲ 1.5), but marginally stabilizing at high

elongation8,22. Previous nonlinear electrostatic gyrokinetic simulations showed nonlinear heat dif-

fusivities followed linear stability trends, however triangularity is written as a function of elonga-

tion as represented in parameterized JET equilibrium data22, where elongation is well known to

have a stabilizing effect6–8. In Refs.6,23, the effect of δ was separated from the effect of κ on ITG-
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dominated turbulence, where nonlinear gyrokinetic simulations suggest δ < 0 (> 0) is marginally

(de)stabilizing, with more pronounced (de)stabilization at larger elongation6,23. In Ref.6, trian-

gularity was varied −0.5 ≤ δ ≤ 0.75, holding κ constant, and Ref.23 studied flux surfaces with

δ = ±0.2. In both studies ITGs were the dominant linear instability and heat flux increased with

δ , however, unstable TEMs were present as well, and Ref.6 attributed the increased heat fluxes for

δ > 0 to the destabilization of low-wavenumber TEMs. This complication does not arise in the

present work due to the use of the adiabatic-electron approximation.

While high-fidelity gyrokinetic simulations typically require kinetic electrons, the adiabatic-

electron approximation has been used successfully to replace kinetic electrons in scenarios with

low density gradients24. Nonlinear ITG turbulence with adiabatic electrons has been studied in the

context of optimizing a global equilibrium to reduce heat loss due to turbulence, where the opti-

mized equilibrium had a triangularity of δ = −0.62525. Although the findings of Ref.25 indicate

strong negative triangularity reduces turbulent transport in ITG turbulence with adiabatic electrons,

the triangularity was not allowed to drop below δ ≈−0.65.

Previous studies have attempted to explain the effect of triangularity on turbulence through

geometric quantities. Some suggest local changes in driving gradients via (∂rψ)−1∇ψ at fixed

background temperature gradient, where ψ is a poloidal flux function and r the minor radial

coordinate9,10. Other works have suggested local shear is responsible8,26. However, changing

the shaping of a flux surface changes both (∂rψ)−1∇ψ and local shear in addition to the curva-

ture vector, an instability drive mechanism for ITGs. The present work provides insight into the

impact of finite perpendicular wavenumber k⊥ (which includes information from local shear and

(∂rψ)−1∇ψ) and curvature on linear mode structure.

Turbulent transport of a magnetic configuration is often estimated using linear quantities with

a quasilinear mixing-length argument. Typically, the quasilinear heat diffusivities are estimated

from random-walk scalings: χ ∼ ∑k⊥ γ/
〈
k2
⊥
〉
, where γ is a linear growth rate at a given per-

pendicular wavenumber k⊥, and the eigenmode average for some quantity A is defined as ⟨A⟩ =∫
dΘA |Φ|2 /

∫
dΘ |Φ|2, with Φ being the electrostatic potential and Θ the coordinate along the field

line assuming a ballooning-like ansatz27,28. Quasilinear transport models can provide good predic-

tions for turbulence-induced transport in tokamaks29–33. However, traditional quasilinear models

break down and fail to predict nonlinear behavior for certain magnetic configurations34, when

close to critical gradients35–37, or when the ratio of plasma pressure to magnetic field pressure β is

varied38–41. The present work seeks to evaluate the capability of the quasilinear model to capture

the nonlinear behavior for configurations with a wide range of triangularities.
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It is well known that zonal flows play a prominent role in the nonlinear saturation of ITG tur-

bulence in tokamaks35,42,43. Zonal flows provide saturation mechanisms through flow shear44,

by mediating energy transfer from unstable to stable modes, or by providing a direct energy sink

through collisional dissipation45–51. The simulations presented in this work confirm zonal modes

play a major role in nonlinear saturation of ITG turbulence, and that the zonal flows may be en-

hanced in geometries with increasing positive triangularity.

In Sec. II, the models used to generate local MHD equilibrium solutions with prescribed ax-

isymmetric shaping are presented along with key geometric quantities associated with ITG damp-

ing and drive. In Sec. III, results from linear gyrokinetic simulations are presented, showing how

the growth-rate spectrum changes with triangularity and how key geometric quantities influence

these changes. Section IV describes a quasilinear transport model in detail and presents nonlin-

ear gyrokinetic heat fluxes and comparisons to the quasilinear model predictions as a function of

triangularity, followed by an analysis of zonal-flow impact. Results are summarized in Sec. V.

II. MODEL

In the present work, solutions to the MHD equilibrium are required local to a magnetic sur-

face. Following Ref.52, local solutions to the Grad-Shafranov equation can be found that are pa-

rameterized by a small number of important geometry quantities such as triangularity. A local

equilibrium is a specification of magnetic coordinates near a single flux surface that satisfy the

MHD force balance equation J×B = ∇p and quasineutrality ∇ ·J = 0 consistently with Ampère’s

Law ∇×B = µ0J. Consistent with MHD equilibrium conditions, the components of the magnetic

field and current normal to the flux surface must vanish. Generating a local MHD equilibrium

solution requires specifying an inverse mapping of the surface in straight-field-line coordinates

(or, equivalently, the poloidal magnetic field strength in axisymmetric configurations), the safety

factor q, and two of three flux surface quantities: the flux-surface-averaged parallel current, flux-

surface-averaged local shear q′ = dq/dψ , and pressure gradient p′ = dp/dψ53. With straight-field-

line coordinates, the divergence-free form of the magnetic field is B = ∇ψ ×∇(qΘ− ζ ), so that

B ·∇ψ = 0, where ζ is chosen to be the geometric toroidal angle and Θ is the straight-field-line

poloidal angle.

The effects of triangularity and elongation on axisymmetric shaping can be introduced follow-

ing the Miller formulation52. Near a flux surface with finite elongation κ and triangularity δ , the

major radius R and height of the flux surface Z are parameterized by the geometric poloidal angle
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θ as

R = R0 + r cos[θ + arcsinδ sinθ ], (1)

Z = κr sinθ . (2)

The Miller equilibrium writes the magnetic field for a flux surface labeled by poloidal flux ψ = ψ0

in cylindrical coordinates B = ∇ψ ×∇ζ + f (ψ0)∇ζ . The magnetic field components are f (ψ0) =

RBt and

Bp =
∂rψ[sin2(θ + xsinθ)(1+ xcosθ)2 +κ2 cos2 θ ]1/2

κR{cos(xsinθ)+∂rR0 cosθ +(sκ − sδ cosθ +[1+ sκ ]xcosθ)sinθ sin(θ + xsinθ)}
, (3)

sκ =
r
κ

∂κ

∂ r
, (4)

sδ =
r√

1−δ 2

∂δ

∂ r
, (5)

where x = sinδ , and ∂rψ is determined through q = dΨ/dψ , where Ψ is a toroidal flux function.

The equilibrium is fully described with ŝ = dlnq/dlnr and α =−2µ0q2Lref∂rψ p′/B2
ref, where Lref

is a macroscopic reference length (set by the minor radius a in this work), and Bref is a reference

magnetic field (set, here, by the on-axis magnetic field). In total, there are nine shaping parameters.

Note that in Ref.52, as well as the present work, a modified definition of sκ = (κ − 1)/κ and

sδ = δ/
√

1−δ 2 is used. For this work, triangularity is varied −0.85 ≤ δ ≤ 0.85 from the GA

standard case [r/a = 0.5, R0/a = 3, κ = 1, δ = 0, q = 2, ŝ = 1, α = 0]54. Additionally, ∂rR0 is

fixed at zero.

Visualization of the cross-sections for the circular case and high positive and negative triangu-

larities are provided in Fig. 1. Negative (positive) triangularity has a vertical section on the low

(high) field side and a pointed section at the high (low) field side. The changes in the flux surface

shapes due to variation of triangularity visualized in Fig. 1 translate to changes in key geometric

quantities related to ITG drive and damping.

Understanding the connection between changes in geometric quantities and changes in insta-

bility behavior provides a more complete physical description in the role of triangularity in ITG

turbulence. Although drift-wave-driven turbulence is well-resolved by the gyrokinetic framework,

physical intuition of geometric contributions to ITG damping and drive can be more apparent in

fluid-like models. Using a three-field fluid model in Refs.55 and56, geometric contributions at

wavenumber k come from a stabilizing polarization term Gk (see Eqs. (6)–(9)), which considers

contributions from the local changes in driving gradients and the local shear, and from a curvature

term Kk (see Eqs. (10)–(12)), which may contribute to ITG drive. The polarization term also repre-
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FIG. 1: Cross-sections of flux surfaces for circular (δ = 0, blue), positive triangularity (δ = 0.85,

orange), and negative triangularity (δ =−0.85, green) cases plotted in cylindrical coordinates

normalized to the major radius of the flux surface, where the toroidal axis is at R = 0.

sents the strength of finite-Larmor-radius damping in the Fourier-analyzed gyrokinetic equations.

Both Gk and Kk are dimensionless quantities.

Key geometric quantities associated with ITG damping and drive are represented in the present

work with local flux-tube geometry as implemented in the GENE code, a massively parallel local

and global Vlasov-Maxwell solver used to study microinstabilities and turbulence57. In the flux-

tube representation employed by GENE, the magnetic field is written as B(z) = (dψ(x)/dx)∇x(z)×

∇y(z), where x is the normalized radial coordinate and y is the normalized binormal coordinate.

The coordinate along the magnetic field line is parameterized by z = Θ. The term Gk is stabilizing

and associated with the local integrated shear Λ =−∇(qΘ−ζ ) ·∇ψ/B:

Gk = θ
2
k gxx +2θkgxy +gyy, (6)

where θk = kx/ŝky. The metric elements are defined by gxx = ∇x ·∇x, gxy = ∇x ·∇y, and gyy =
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∇y ·∇y and are related to the local equilibrium model by

gxx =
|∇ψ|2

(∂rψ)2 , (7)

gxy =− ΛB
Bref

, (8)

gyy =
(∂rψ)2

B2
ref

B2

|∇ψ|2
(1+Λ

2). (9)

The quantity Gk is a non-negative quantity, where larger values of Gk correspond to increased

stabilization. The other geometric quantity of interest is the curvature Kk, which is associated with

ITG drive. At zero pressure gradient, Kk is defined as

Kk = θkKx +Ky, (10)

Kx =− Lref

∂rψ
|∇ψ|κg, (11)

Ky =
∂rψLref

Bref

B
|∇ψ|(κn +Λκg), (12)

where κn and κg are the normal and geodesic components of the curvature vector κ = κnb̂+κg(b̂×

n̂), with b̂ = B/B and n̂ = ∇ψ/ |∇ψ|. The quantity Kk is defined such that Kk < 0 (> 0) enhances

(reduces) ITG drive.

III. LINEAR INSTABILITY CHARACTERISTICS

The linear gyrokinetic simulations presented in this section are computed through eigenvalue

calculations in flux-tube geometry, allowing all linearly unstable modes, dominant or subdomi-

nant, to be computed at each (kx,ky) wavenumber pair. The ρs normalization of the wavenumber

will be assumed in the remainder of this work, where ρs = cs/Ωci is the ion sound gyroradius,

cs =
√

Ti0/mi, Ti0 is the background ion temperature, mi is the ion mass, and Ωci is the ion gy-

rofrequency. The ρs normalization of the wavenumber will be assumed in the remainder of this

work. The electrostatic potential Φ is given in units of Ti0ρs/ae, where e is the elementary charge.

Linear growth rates for drift-wave instabilities in tokamaks are commonly analyzed at the radial

wavenumber kx = 017,22, under the assumption that the most unstable linear eigenmode occurs at

kx = 0, corresponding to highly elongated radial “streamer" structures58,59. The assumption of

linear growth rates peaking at kx = 0 does not always hold60. Indeed, the present work also finds

some positive triangularity configurations that have peak linear growth rates at kx ̸= 0.

Growth rates are presented in units of cs/a and were checked for convergence in the parallel

spatial direction by doubling the parallel spatial resolution until growth rates changed by less than

7



ten percent. The linear simulations use a numerical grid size of Nx×Nz×Nv∥×Nµ = 9×32×32×

8, where µ is the magnetic moment. The hyper-diffusion coefficients are εz = 2 and εv = 0.261.

The normalized temperature and density gradients are a/LTi = 4, a/Ln = 1, respectively, and the

backround temperature ratio is Ti0/Te0 = 1. The background ion temperature gradient was chosen,

because, at a/LTi = 3, the nonlinear simulation for δ = 0.85 was in a Dimits regime35. Also, the

growth rates scaled with change in a/LTi indicating the modes were ITG. All simulations, linear

and nonlinear, are collisionless and assume β = 0 with adiabatic electrons. In all cases, ITG is the

dominant instability.

III.1. Growth Rate Spectra

First, the dominant linear growth rate spectra for each triangularity are compared. Figure 2

shows the dominant linear growth rate spectra for the circular and negative-triangularity cases.

For negative triangularity, the peak growth rates appear at kx = 0, decreasing as δ becomes more

negative. Additionally, as δ becomes more negative, the linear growth-rate spectrum broadens as

a function of kx.

However, the positive-triangularity geometries see different trends in the linear growth-rate

spectrum, as shown in Fig. 3. The first feature of note is that the peak linear growth rate appears in

the range 0.2 ≤ kx ≤ 0.35, increasing in magnitude and shifting to higher kx for 0.25 ≤ δ ≤ 0.75

before decreasing significantly at δ = 0.85.

Although peak growth rates may increase with positive δ , at low wavenumbers ky ≲ 0.3, the

linear growth rates decrease with δ . Because turbulent transport is typically dominated by modes

at low wavenumbers, in many instances, only the kx = 0 modes are considered in linear analysis

for tokamaks17,22,62. But, as shown in Fig. 3, the reduced contributions to turbulent transport from

growth rates at low (kx,ky) may be offset by the contributions from larger growth rates at moderate

(kx,ky) as triangularity is increased. Additionally, the unstable spectrum substantially narrows in

(kx,ky) space.

In the geometries δ ≥ −0.25, two distinct lobes are observed in the growth-rate spectrum.

Cross-phases between Φ and total ion temperature fluctuations, a measure of the efficiency of

ITG drive, in each lobe are similar, and all significantly unstable modes are strongly ballooning

(strongly peaked at the outboard midplane z = 0). The behavior of the different lobes can be

attributed to geometric effects, further described in Sec. III.2.
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(a) δ = 0 (b) δ =−0.25

(c) δ =−0.5 (d) δ =−0.75

(e) δ =−0.85

FIG. 2: Growth-rate spectra for δ ≤ 0. A fixed color scale is bounded by the largest growth rate

for |δ | ≤ 0.85. White is a region of stability. Two lobes for δ ≥−0.25 and an island in the

lower-right corner of each plot correspond to changes in polarization and curvature terms.

9



(a) δ = 0 (b) δ = 0.25

(c) δ = 0.5 (d) δ = 0.75

(e) δ = 0.85

FIG. 3: Growth-rate spectra for δ ≥ 0. A fixed color scale is bounded by the largest growth rate

for |δ | ≤ 0.85. White is a region of stability. Two lobes and an island in the lower-right corner of

each plot correspond to changes in polarization and curvature terms.
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III.2. Geometric Influences on Linear Growth Rates

To understand how changes in geometry from triangularity affect linear growth rates, the am-

plitude of the eigenfunctions as a function of the position z along the field line for (kx = 0,0.2,0.4;

ky = 0.5) are plotted with the polarization and curvature terms experienced by the modes in Figs. 4–

6. In Fig. 4, for δ = 0, as kx is increased, the eigenfunction amplitude and polarization term’s

minimum shifts away from z = 0. When the eigenfunction changes shape, it samples a different

region of curvature. The change in the shape of the curvature term sampled by the eigenfunction in

turn correlates with the transition from one lobe to another in the growth-rate spectrum, which are

stabilized due to smaller destabilizing magnitudes of the curvature term. Additionally, the magni-

tude of the curvature sampled by the eigenfunction correlates well with the change in magnitude

of the dominant growth rate. This picture persists in the other geometries as well: the polarization

term correlates with the shift in the parallel eigenfunction amplitude profile to a new region of

curvature, which correlates with the relative magnitude of the dominant growth rate.

The geometry with δ = −0.85 is used as a representative case for the negative triangularity

geometries. In Fig. 5, the polarization and curvature terms are presented with the eigenfunction

profile for δ = −0.85. The polarization term forms a large well and is more robust to changes in

kx than the circular case, correlating with the eigenfunction amplitude shifting only slightly away

from z = 0. The curvature term for negative triangularity is nearly constant about z = 0. Although

there are regions of strong unfavorable curvature near z/π = 0.5, only the region of nearly constant

curvature is sampled by the eigenfunction of each mode, because of the large amount of shear from

the polarization term at the same location along the field line as the only the nearly constant region

of curvature centered at z = 0. The robustness to changes in kx of the polarization and curvature

terms and of the eigenfunction structure sampling near-constant curvature agree with the increased

uniformity in the growth-rate spectrum in kx in the negative-triangularity geometries.

For δ = −0.85, the upper and lower corners of the flux surface cross-sections shown in Fig. 1

do not correlate strongly with the qualitative trends of the linear growth-rate spectrum. As shown

in Fig. 5, local maxima of Gk at z/π = ±0.36 are located near the low field side of the upper

and lower corners. In fact, the locations of maximum Gk, which correlates with the width of the

eigenfunction, is located on the diagonal edge of the cross-section at z/π = ±0.63 at the point of

the most unfavorable curvature.

For positive δ , the geometry with δ = 0.85 is used as a representative. The equivalent data

corresponding to that in Figs. 4 and 5 are presented in Fig. 6, but for δ = 0.85. As with δ =−0.85,
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(a) (b)

(c)

FIG. 4: (a) and (b): Linear eigenfunction amplitudes (dashed lines) as functions of parallel

coordinate at (kx = 0,0.2,0.4; ky = 0.5) (blue, orange, and green, respectively) with polarization

(a) and curvature (b) terms (solid lines) for the circular case. The polarization term correlates with

the eigenfunction shape, and the less unfavorable magnetic curvature sampled by the

eigenfunction as kx is increased correlates with the decreased magnitude of dominant linear

growth rate in the linear growth-rate spectrum (c) at the three modes indicated above. Mode

locations in (c) are marked with a white crosses and circles whose colors correspond to the

nomenclature in (a) and (b).

a well in the polarization term localizes the eigenfunction along the field line. However, unlike δ =

−0.85, the polarization term for the configuration with δ = 0.85 significantly shifts its minimum

as kx is increased, correlating with a significant shift in eigenfunction along the field line. Also,
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(a) (b)

(c)

FIG. 5: (a) and (b): Linear eigenfunction amplitudes (dashed lines) as functions of parallel

coordinate at (kx = 0,0.2,0.4; ky = 0.5) (blue, orange, and green, respectively) with polarization

(a) and curvature (b) terms (solid lines) for δ =−0.85. The polarization term correlates with the

eigenfunction shape, and the similar magnetic curvature sampled by the eigenfunction as kx is

increased correlates with the broadening of the linear growth-rate spectrum (c) as a function of kx.

Mode locations in (c) are marked with a white crosses and circles whose colors correspond to the

nomenclature in (a) and (b).

the curvature term has significantly more variation in kx compared to the δ ≤ 0 geometries. For

δ = 0.85, the eigenfunction for (kx = 0.2,ky = 0.5) is sampling a region of marginally unfavorable

curvature, where a small negative (positive) shift in z would (de)stabilize the mode. A negative

(positive) shift in z corresponds to a mode with slightly larger (smaller) kx or ky. This sensitivity
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in wavenumber to curvature sampled by the eigenfunction directly correlates with the observed

narrowing of the unstable growth-rate spectrum.

(a) (b)

(c)

FIG. 6: (a) and (b): Linear eigenfunction amplitudes (dashed lines) as functions of parallel

coordinate at (kx = 0,0.2,0.4; ky = 0.5) (blue and orange, respectively) with polarization (a) and

curvature (b) terms (solid lines) for δ = 0.85. The polarization term correlates with the

eigenfunction shape, and the magnetic curvature sampled by the eigenfunction as kx is increased

correlates with the narrowing of the linear growth-rate spectrum (c). Mode locations in (c) are

marked with a white crosses and circles whose colors correspond to the nomenclature in (a) and

(b).

In contrast to δ =−0.85, for δ = 0.85, the upper and lower corners influence qualitative trends

of the linear growth-rate spectrum. Here, the maximum values of Gk, as shown in Fig. 6, are on
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the high-field side of the upper and lower corners of the flux surface. At finite kx, one of the global

maxima and the local maximum in Gk coinciding with the point lowest Kk correlates with the

width of the eigenfunction. However, a change in Gk and Kk with kx at the flux surface corner does

not affect a substantial change in eigenfunction amplitude or curvature sampled. The points along

the field line affecting the eigenfunction dependency with kx and growth spectrum are z/π =±0.2,

which are along the diagonal edges of the cross-section shown in Fig. 1. As kx is increased, the local

maximum in Gk at z/π = 0.2 is increased, correlating with the change in eigenfunction amplitude.

A substantial change in favorability of the curvature with kx sampled by the eigenfunction occurs

at z/π =−0.2. There, the eigenfunction amplitude is the largest, thus contributing significantly to

the growth rate. In summary, the broadening of the growth-rate spectrum in kx with more negative

δ and the narrowing of the growth-rate spectrum with more positive δ and the peak growth rates

occurring at kx ̸= 0 can be explained by the polarization term localizing the eigenfunction to a

region of magnetic curvature, and the upper and lower corners of the flux surface cross-section

only influences qualitative trends in the linear growth rate spectrum for δ > 0.

IV. NONLINEAR SIMULATIONS

The properties of linear ITG eigenmodes are insightful and can be used in quasilinear transport

models to estimate the relative levels of nonlinear heat fluxes between multiple configurations at a

reduced computational cost. However, the quasilinear model is not always predictive34,36,37,40,41,

and turbulence is manifestly a nonlinear process. Therefore, it is important to assess the degree of

which quasilinear estimates accurately reflect turbulence physics and resultant scalings. Nonlinear

simulations are performed with converged grid resolutions Nx×Nky ×Nv∥×Nµ = 128×32×48×8,

and Nz = 32 for |δ | ≤ 0.5 or Nz = 64 for |δ | ≥ 0.75. Additionally, a radial box size Lx = 120ρs and

minimum wavenumber simulated kmin
y = 0.05 were found to yield numerically converged nonlinear

simulations.

Heat fluxes presented in this section have a gyro-Bohm normalization, QgB = csni0Ti0(ρs/a)2,

where ni0 is the background ion density. The time traces of nonlinear heat flux for δ = 0 and

δ = ±0.85 are plotted in Fig. 7. Reported time averages are taken over the quasistationary state,

in all cases covering at least 1000 time units. Nonlinear quantities of interest are obtained by

time-averaging over the quasi-stationary state, unless stated otherwise.

The heat fluxes in Fig. 7 are time averaged and decomposed into wavenumbers ky in Fig. 8. The

case δ =−0.85 has a significantly different heat flux spectrum from δ = 0, with two peaks present
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FIG. 7: Time traces of nonlinear electrostatic heat flux for δ = 0 (solid blue), δ =−0.85 (red

dashed), and δ =−0.85 (green dotted). By t = 400a/cs, all three plotted cases have reached a

quasi-stationary state, where reported nonlinear quantities have been averaged for at least 1000

time units afterward, unless stated otherwise.

at ky = 0.05 and ky = 0.2. At δ = 0.85, a moderate shift of the peaks to ky = 0.3 is observed.

Additionally, the upshift in the peak heat flux in ky implies an upshift in kx as well, correlating with

the shift in peak growth rates to finite kx for δ > 0.

IV.1. Comparison of Nonlinear and Quasilinear Heat Fluxes

Instead of performing resource-intensive nonlinear gyrokinetic simulations, a quasilinear mix-

ing length argument for the quasilinear heat diffusivity χQL is sometimes used with linear quan-

tities to estimate nonlinear heat fluxes at much lower computational cost. Beginning from an

assumption that the quasilinear heat flux is determined by cross-field diffusive transport due to

interacting turbulent eddies with perpendicular spatial scale ∆x2 ∝ 1/k2
⊥ and time scale ∆t ∝ 1/γ ,

QQL is written as

QQL =−nχ
QL

∇T (13)
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FIG. 8: Heat fluxes as functions of ky for δ = 0 (solid blue), δ =−0.85 (red dashed), and

δ =−0.85 (green dotted). The heat flux spectra are numerically converged, as the heat flux

specra did not appreciably change when kmin
y was halved.

where the quasilinear heat diffusivity is computed by summing over all perpendicular radial and

binormal wavenumbers k, with unstable modes indexed by j (see Ref.63)

χ
QL = C ∑

k, j
Skwk, j

γk, j〈
k2
⊥,k, j

〉 , (14)

where 〈
k2
⊥,k, j

〉
=

∫
dz[k2

xgxx +2kxkygxy + k2
ygyy]

√
g
∣∣Φk, j

∣∣2∫
dz
√

g
∣∣Φk, j

∣∣2 , (15)

and
√

g is the Jacobian. In Eqs. (14) and (15), Φk, j is the linear eigenfunction, and the weight

function is wk, j = Qk, j/n2
k, j, where Qk, j and n2

k, j are the linear electrostatic heat flux and perturbed

density, respectively. The shape factor Sk weighs each ky contribution according to a representative

nonlinear heat flux spectrum from a reference nonlinear simulation. In the present work, Sk is

set by the kx-integrated nonlinear heat flux spectrum for δ = 0. The constant C is an overall

normalization factor, set here so that the quasilinear and nonlinear integrated heat fluxes for the

configuration with δ = 0 match. This is the same model as Ref.63, where Eq. (15) in the present

work is equivalent to Eq. (3) in Ref.63 up to a constant factor.

In this work, a quasilinear estimate is initially used to estimate the effect of varying triangularity

on turbulent electrostatic (es) ion heat transport. This estimate is subsequently compared with
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nonlinear simulation results. The nonlinear heat fluxes QNL
es and quasilinear estimates QQL

es versus

δ are presented in Fig. 9. Based on nonlinear heat flux data and statistical uncertainty and finite-

resolution effects in turbulence simulations, for |δ | ≤ 0.5, nonlinear heat flux has at most a weak

dependence on triangularity. However, for |δ | = 0.85, QNL
es decreases strongly. Additionally, the

nonlinear heat flux is lower for each value of negative triangularity than it is for the corresponding

positive triangularity. These results provide a possible explanation for the equilibrium shaping

of an optimized tokamak for ITG turbulence with adiabatic electrons to have substantial negative

triangularity25.

Note that most studies reporting improved confinement with negative triangularity were based

on TEM or ITG with kinetic electron scenarios at moderate triangularity6,9,10,12–18,23. Specifically,

in Refs.6,23, the ITG-dominated regime still had unstable TEMs contributing to the turbulence.

Decreasing the electron density gradient would stabilize these TEMs, and the electrons would

behave more adiabatically24,64. The inverse relationship of adiabatic behavior of electrons and

density gradient combined with the results presented here and in Refs.6,23 indicates increasing the

density gradient in an ITG-dominated regime with kinetic electrons could make the nonlinear heat

flux more sensitive to variations in δ at moderate triangularity.

As shown in Fig. 9, comparing the quasilinear estimates with the nonlinear heat fluxes yields

good qualitative agreement for most triangularities. The quasilinear estimates for |δ | ≤ 0.5 cap-

tured the weak dependence of QNL
es on δ for moderate triangularity. For |δ | ≥ 0.5, the quasilinear

estimates captures the qualitative decrease of the nonlinear heat fluxes, but the quasilinear estimates

for δ ≥ 0.5 greatly underestimates the heat flux as a function of triangularity.

Given the importance of zonal flows in toroidal geometry35,44,45 (and confirmed in Sec. IV.2),

the poor predictive performance of the quasilinear model at strong positive δ could be due to

changes in saturation efficiency. Near criticality, however, the quasilinear model used in the present

work is expected to overestimate heat fluxes rather than underestimate36,37, suggesting strong tri-

angularity would strongly detune the nonlinear resonance. Detuning of the nonlinear resonance is

consistent with strong variation in the linear growth-rate spectrum as a function of kx (as seen in

Fig. 3), as resonant wavenumber triplets involving the zonal flow imply weak kx variation.

IV.2. Role of Zonal Modes

Because zonal flows play a key role in saturating ITG turbulence in toroidal geometry35,44,45,

it is important to understand the behavior and importance of zonal modes, which include zonal
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FIG. 9: Nonlinear (orange circles) and quasilinear (blue squares) ion electrostatic heat fluxes in

gyro-Bohm units versus triangularity. The quasilinear heat flux is normalized such that the

kx-integrated heat flux spectrum for the circular geometry were equal at each ky. Nonlinear heat

flux is weakly dependent on δ for |δ | ≤ 0.5, and decreases strongly for |δ |= 0.85. Quasilinear

estimates capture the weak dependence of QNL
es on δ for |δ | ≤ 0.5 and substantial decrease for

|δ |= 0.85 but overestimates the decrease for δ ≥ 0.5.

flows, zonal densities, or zonal temperatures, as triangularity changes. If the zonal ky = 0 mode

of the electrostatic potential is removed from a nonlinear gyrokinetic simulation, i.e., Φ(kx,ky =

0,z) = 0, which includes the zonal flow Φ(kx,ky = 0,kz = 0) = 0, then the effects of zonal-mediated

coupling between unstable and stable modes and zonal-mode damping of nonlinearly transferred

energy from an instability are removed from the simulation. Note that while the z direction is

not periodic, kz = 0 denotes the z-averaged component. The effect of zeroing out Φ(kx,ky = 0,z)

can be quantified by the ratio of nonlinear heat flux without Φ(kx,ky = 0,z) to nonlinear heat flux

with Φ(kx,ky = 0,z) retained. A ratio greater than one indicates Φ(kx,ky = 0,z) contribute to

lowering the saturated heat flux levels in nonlinear gyrokinetic simulations. If one configuration

has a larger ratio of heat fluxes than another, then Φ(kx,ky = 0,z) contributes more in the saturation

of turbulence in that configuration.

This procedure was applied in nonlinear simulations by setting the value of Φ(kx,ky = 0,z) = 0

at each simulation time step. Hereafter, this scenario is referred to as zonal-mode-suppressed
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(ZMS). The ratio of ZMS nonlinear heat fluxes to QNL
es is potted in Fig. 10. For δ = −0.25 and

δ = −0.5, following this prescription results in turbulence with numerically poorly-conditioned

behavior, such as large local gradients on radial scales comparable to the grid spacing. Thus, data

for these particular δ is omitted from the figure. For all other geometries, removing the zonal

flows increased the nonlinear heat flux significantly, indicating zonal modes play an important role

in turbulent saturation for all geometries studied. As shown in Fig. 10, at positive triangularities,

the ratios were larger, with the general trend of more positive triangularity having a larger ratio of

ZMS to original heat fluxes, which in turn suggests zonal flows are more important for turbulent

saturation as positive δ is increased. The ratios of ZMS to original heat flux are only three percent

lower than the circular case for δ =−0.85 and about 25% lower for δ =−0.75, suggesting zonal

flows are relatively less important for turbulent saturation than they are in the case of the circular

and positive-triangularity geometries.

FIG. 10: The ratio of nonlinear electrostatic heat flux where Φ(kx,ky = 0,z) was artificially

suppressed at each time step to that of the original, at each triangularity.

The relative enhancement of zonal flows due to changes in triangularity is estimated using the

zonal-flow residual |ΦZ|(t → ∞)/ |ΦZ|(t = 0) as a proxy for zonal-flow damping65 (although in

axisymmetric geometry this is not a dissipative process in the absence of collisions) and a k2
⊥ aver-

age of the nonlinear fluctuation spectrum summed over non-zonal wavenumbers in Eq. (15), with

the nonlinear eigenfunction as a proxy for zonal flow drive. Physically, the zonal-flow residual is a
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measure of the bounce-averaged linear response to an externally applied electrostatic potential and

is a function of magnetic geometry. Once an instantaneous electrostatic potential is applied, the part

of the potential associated with geodesic acoustic modes decays, leaving an undamped component

of the potential, which is the zonal-flow residual. The zonal-flow residual is an inverse proxy for

zonal-flow damping, because a larger zonal-flow residual indicates less damping of the zonal flow.

Prior studies have shown that zonal residuals increase with increasing positive triangularity22,66.

The non-zonal spectrally averaged value of k2
⊥ is a proxy for zonal-flow drive for two reasons. It is

a measure of energy available for zonal flows from the turbulence spectrum46–50,56. It also quanti-

fies the strength of the nonlinearity that drives flows, which is given by the advection of vorticity.

As such, the advection of vorticity nonlinearity has a factor of k2
⊥ relative to other nonlinearities.

A larger non-zonal energy average and zonal-flow residual indicate that zonal flows are enhanced,

because the drive mechanism for zonal flows from the non-zonal energy spectrum is larger and a

larger fraction of the potential is undamped, respectively.

In Fig. 11, the proxies for zonal-flow damping and drive are plotted. In the present work, the

zonal residual is computed at kx = 0.05, which is representative of zonal flows at length scales

relevant to ITG saturation physics41 and the kx-dependence of the zonal residual is very weak at

these length scales67. For positive triangularity, the zonal residual increases, indicating less zonal-

flow damping with increasing positive δ . Although elongation of the flux surfaces in the present

work are not the same as Refs.22,66, the trend in zonal residuals for moderate positive triangularity

is in agreement with Refs.22,66. Larger zonal-flow residuals and more nonlinear drive indicate

enhanced zonal flows in positive triangularity, in agreement with nonlinear data. For δ = −0.25,

and δ = −0.5, there is both more damping and drive, making it difficult to conclude the relative

role of zonal flows compared with δ ≥ 0. For δ ≤−0.75, there is marginally less drive and slightly

more damping, indicating zonal flows may be somewhat diminished compared to zonal flows for

δ ≥ 0. The relative increase of non-zonal energy over zonal-flow residual in δ ≤ 0 suggests non-

zonal nonlinear interactions may play a larger role in saturating ITG turbulence at those geometries,

correlating well with the data in Fig. 10. However, given the findings from Fig. 10, zonal flows

remain the primary saturation mechanisms, even at δ ≤−0.75.

V. CONCLUSIONS

A linear and nonlinear electrostatic gyrokinetic study of ITG turbulence with adiabatic electrons

has been conducted varying triangularity while holding other shaping parameters of the Miller

21



FIG. 11: Zonal-flow residuals (green squares, left axis) and nonlinear non-zonal energy (red

circles, right axis) versus triangularity. The zonal-flow residual acts as a proxy for linear damping

of zonal flows (larger residual means less damping), and the non-zonal energy is a proxy for

zonal-flow drive. Both larger (smaller) zonal-flow residuals and non-zonal energy suggest zonal

flows are enhanced (diminished) for δ ≥ 0 (δ ≤−0.75).

equilibrium52 fixed. Linear simulations show that as triangularity becomes more negative, the

maximum growth rate decreases, and the growth-rate spectrum broadens as a function of kx. As

triangularity becomes more positive, the peak growth rate increases and shifts to finite kx before

decreasing at δ = 0.85. Also, the growth-rate spectrum narrows substantially in kx and ky with

more positive triangularity.

These changes in linear behavior are explained by changes in the polarization term Gk and

curvature term Kk, as defined in Eqs. (6)–(12), where the polarization term influences the parallel

structure and localization of the linear eigenmode, which samples different regions of favorable

or unfavorable curvature, setting the growth rate accordingly. While both terms influence the

shape of the linear eigenfunction as a function of magnetic field line coordinate, the polarization

term correlates strongly with the change in eigenfunction shape with perpendicular wavenumber.

Negative-triangularity geometries have polarization terms and parallel eigenmode profiles that are

more robust to changes in kx, and is not substantially affected by the upper and lower corners

of the flux surface cross-section. For positive-triangularity geometries, the polarization term and
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parallel eigenmode profile are more sensitive to changes in kx as eigenmodes shift to regions of

more favorable curvature, correlating well with the narrowing of the growth-rate spectrum, and is

partially affected by the upper and lower corners of the flux surface cross-section.

A quasilinear transport model is compared to time-averaged quasi-stationary nonlinear electro-

static heat fluxes. Both quasilinear estimates and nonlinear heat fluxes show qualitative agreement,

where the heat flux has a weak dependence on triangularity for |δ |= 0.5, decreasing significantly

when |δ | ≥ 0.75. Additionally, at |δ | ≥ 0.75, the negative-triangularity equilibrium has a lower

nonlinear heat flux than the corresponding positive triangularity geometry, which is not captured

by the quasilinear estimates. For the present case, triangularity, while favorable for improving

confinement, produces no large changes in the heat flux except for the highest values of |δ |, in-

dicating negative triangularity is marginally more favorable for reducing ITG-driven turbulence.

Prior studies on negative triangularity concluded improved confinement resulted from reductions

in TEM turbulence in ITG-dominant regimes with strong enough density gradients for TEM desta-

bilization and in TEM-dominant regimes6,9,10,12–18,23. This phenomenon is not observed here as

only adiabatic electrons were employed to isolate ITG physics.

The importance of zonal flows in turbulence saturation was studied via nonlinear simulations

artificially suppressing Φ(kx,ky = 0,z), and by assessing the relative strength of zonal flows using

the proxies zonal-flow residuals65 for the zonal-flow damping and
〈
k2
⊥
〉

for the nonlinear zonal-

flow drive. When removing Φ(kx,ky = 0,z), the nonlinear heat fluxes increase by at least a factor

of four compared to the unmodified simulations, indicating zonal flows play an important role in

saturating ITG turbulence in each configuration studied in the present work. Positive triangularities

have a larger ratio of nonlinear heat flux with suppression to nonlinear heat flux without relative

to the circular case, and negative triangularities have a slightly lower ratio, meaning zonal flows

play a larger role in saturating ITG turbulence at larger triangularities. An increase in zonal-

flow residuals and the nonlinear non-zonal energy indicates zonal flows are indeed expected to

be stronger as positive triangularity increased. For strongly-negative-triangularity equilibria, the

zonal-flow residuals decrease marginally along with the nonlinear non-zonal energy, suggesting

zonal flows are expected to be weaker at negative triangularity.

Together, these results indicate that, in the electrostatic regime with adiabatic electrons studied

here, moderate negative values of triangularity have only a modest beneficial effect on reducing

heat transport from ITG turbulence, while extreme values of triangularity, both negative and posi-

tive, have a substantial beneficial affect. The importance of zonal flows in the geometries studied

combined with the quasilinear model underestimating the heat flux near criticality for strong posi-
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tive δ , suggests triangularity changes saturation efficiency. The observed improvements associated

with negative triangularity seen in experiments likely involve combinations of other aspects of the

MHD equilibrium and the associated axisymmetric shaping impacting other microinstabilities, ki-

netic electrons, plasma β , and temperature and density gradients.
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