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Abstract

Chemical models are built up from chemical reactions and parameters. Each of these parameters has
a degree of uncertainty. Sensitivity analysis has proven to be an important tool to quantify and trace this
uncertainty to specific input parameters. In this study, the methodology of a prominent global sensitivity
analysis method, i.e. Sobol’s variance-based method, is presented for chemical modeling with a focus on
microkinetic modeling. Sobol’s method is developed to be used as an analysis framework, which - once
set-up for microkinetic modeling - can easily be used for different models.

This analysis framework is successfully demonstrated by means of two case studies from the field of
microkinetic modeling: (1) CO oxidation, (2) oxygen evolution reaction (OER) at the photoanode in a
photo-electrochemical cell. The results give insight into the influence of each input parameter on the
output uncertainty. For CO oxidation, it is found that the temperature and chemisorption energies have
most impact on the output. For the OER model, the valence band energy and solvent reorganization energy
are most influential. Based on this, a workflow is proposed incorporating the sensitivity analysis into the
modeling process, aimed at reducing the output uncertainty and at validating and optimizing the model.



Symbol list

A Left half of sampling sequence;
A ∈ RN×k

B Right half of sampling sequence;
B ∈ RN×k

Xi Input parameter i; Xi ∈ R
Y Output parameter which equals

Y = f(X1, X2, . . . , Xk); Y ∈ R
X Matrix of all input parameters;

X ∈ RN×k

1 Introduction

Chemical models are built up from chemical reac-
tions and parameters. Each of these parameter has
a certain degree of uncertainty. This uncertainty is
reflected in the modeling results. Sensitivity analysis
has proven to be an important tool to quantify and
trace the effect of these uncertainties to specific model
parameters and to validate models. [1] Over the years,
with ongoing increase of computational power, sensi-
tivity analyses have become more popular. [2] Within
the field of electrochemistry, and particularly in mi-
crokinetic modeling, sensitivity analyses have been
used, however infrequently. Examples include: The
use of the Morris method on models of photochemi-
cal degradation of ethene in the atmosphere and the
combustion of methane identifying the most sensitive
reactions; [3] Application of global sensitivity analysis
based on Sobol’s method to identify the pertinent
reaction steps in a model describing the dehydro-
genation reaction kinetics of methanol from various
metal surfaces; [4] Use of local sensitivity analysis to
develop ethanol steam reforming models at reduced
computational costs; [5] Implementation of global sen-
sitivity analysis to highlight the correlation in en-
ergies of species and reactions and the uncertainty
of current Density Functional Theory (DFT) meth-
ods. [6,7] These examples show the benefits of sensitiv-
ity analysis for their respective applications: It indi-
cates which parameters or reactions have the largest

impact on the model, and as such highlight where im-
provements can be made. Furthermore, it can iden-
tify how uncertainty propagates in the model, and
provide a confidence bound to the model results.

In this study, we demonstrate the advantages of
global sensitivity analysis in the broader context of
microkinetic modeling and present the procedure of a
prime global sensitivity analysis method, the Sobol’s
method, for chemical modeling by means of two case
studies. In Sobol’s method, the variance of the model
output parameter, i.e. the parameter obtained by ex-
ecution of model simulations, which could for exam-
ple be the current density, is partitioned in Sensitiv-
ity Indices (SIs) according to fractional contribution
of the input parameters. [8,9] Here, the set of input
parameters includes all parameters chosen to be an-
alyzed and can refer to both (1) tuneable parame-
ters, which are parameters that can be set and fixed
in an experiment, e.g. illumination intensity, and (2)
fixed parameters that are typically constants within
the system, but due to a lack of knowledge have a
range of uncertainty, e.g. rate constants. We aim to
illustrate that performing sensitivity analysis is not
necessarily a complex procedure and can provide ben-
eficial model insights. To this end, we introduce an
easily adaptable framework for the implementation
of Sobol’s method, which is disconnected from the
model except for a number of inputs and outputs, see
Figure 1. The components of this figure are discussed
in Section 2. By developing a framework, the method
can be applied to any chemical model. We demon-
strate the analysis implementation and highlight typ-
ical formats of the analysis results, by means of two
case studies from the field of microkinetic modeling,
a state-space model of CO oxidation and the oxygen
evolution reaction (OER) in water-splitting electrol-
ysis. Additionally, we introduce visualizations that
can be generated from data resulting from the sensi-
tivity analysis.

The structure of this work is as follows: Section 2
describes our motivation for use of Sobol’s method as
well as its implementation and the sampling method
using the Sobol’ sequence. Section 3 describes the
model and results of the first case study, the CO ox-
idation model. Subsequently, Section 4 describes the
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Figure 1: Sensitivity Analysis (SA) process chart with the generally applicable SA framework and the case
dependent model.

second case study, the model of the OER in water-
splitting electrolysis. A concluding discussion is given
in Section 5.

2 Sobol’s method

In this section, we motivate the use of Sobol’s sen-
sitivity analysis method and explain its implemen-
tation. The explanation is divided into three parts,
represented by the components of the framework in
Figure 1: (1) ’Sensitivity Indices (SIs)’: calculation
of the SIs based on the contributions of input pa-
rameters to output parameter variance, (2) ’Parame-
ter Sampling ’: determination of the input parameters
from a specified sampling sequence, and (3) ’Conver-
gence of results? ’: discussion of three different crite-
ria for convergence of the SIs. These three parts are
detailed in subsections of the same name. The visu-
alization of the SIs is discussed by means of the case
studies in Sections 3 and 4.

2.1 Motivation

Sobol’s method is a global variance-based sensitivity
analysis method. [8,9] Hence, the measure for sensitiv-
ity of the model is the variance of the model output
parameters as a function of the input parameters.
Variance is defined as the square of the standard de-
viation. The motivation for a variance-based method
is twofold:

• Variance-based methods are global sensitivity
analysis methods (GSA), which analyze the re-
sponse of the model to variation of multiple in-
puts simultaneously. [1] Hence, these are able to
detect interaction effects between multiple pa-
rameters. Additionally, GSA methods are suited
to handle non-linear input/output relations and
are independent of model monoticity. [1] On the
other hand, in local methods, parameters are
varied one-at-a-time. This is computationally
less intensive, but leaves a large part of the
input-space unexplored. This leads to an incom-
plete view of model sensitivity, as the parameter
interactions are not identified. [10]

• The direct relation between the SIs and the
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model output parameter variance is advanta-
geous when the goal of the analysis is to re-
duce the output uncertainty by decreasing its
variance, an approach commonly referred to as
variance cutting. [11]

Sobol’s method and FAST [12] (primarily the ex-
tended method eFAST) [13] are the most widely used
global variance-based methods. Both methods gen-
erally give similar results. [14] We focus on Sobol’s
method in this study, as the computation of the
higher order SIs that take the interactions into ac-
count is more straightforward and intuitive to im-
plement compared to eFAST. [15,16] Sobol’ method
has been used earlier in fields ranging from en-
vironmental and hydrologic modeling, e.g. sur-
face water runoff models, [11,17,18] crop growth mod-
els [19] and water distribution systems, [20] to biolog-
ical/biomedical modeling, e.g. epidemic models [21]

and models describing stem cell differentiation in the
colon and colorectal cancer. [22] It has not been fre-
quently used for microkinetic modeling so far.

2.2 Sensitivity indices (SIs)

The primary step of the sensitivity analysis procedure
is the determination of the SIs. We describe this for
a model of the form Y = f(X1, X2, . . . , Xk), with a
single output parameter Y and input parameters Xi,
where it is assumed that the inputs are independently
distributed. All input parameters are combined in
the array X. The description given in this section
follows the method in Saltelli et al. [23] An SI repre-
sents the degree to which an input parameter affects
the variance of the output parameter, V (Y ). This
output variance can be deconstructed into the vari-
ance contributions of each input separately, as well
as their interactions, i.e. the variances that depend
on a subset of the parameters, [23]

V (Y ) =

k∑
i=1

Vi +

k∑
i=1

k∑
j>i

Vij + ...+ V12...k, (1)

where Vi is the direct contribution of parameter Xi

to the output parameter variance and Vij are inter-
action terms that depend on contributions of both

input parameter Xi and Xj , etc. The direct variance
contribution Vi is defined as, [23]

Vi := VXi
(EX∼i

(Y | Xi)) , (2)

where the term EX∼i
(Y | Xi) denotes the mean value

of output Y under variation of every input parameter
except Xi, which is set to a fixed value. (Note that
X∼i refers to all parameters except Xi.) The oper-
ation VXi(. . . ) determines the variance of this mean
when changing the given value for Xi. The interac-
tion term Vij is defined as

Vij := VXi,Xj

(
EX∼i,j

(Y | Xi, Xj)
)
− Vi − Vj , (3)

which performs the same operation on the combina-
tion of parameters Xi and Xj , minus their direct ef-
fects.

The SI which represents the direct contribution of
each parameter, the first-order (FO) SI, is deter-
mined by dividing the direct contribution by the out-
put variance, [23]

SFO
Y,i =

Vi

V (Y )
. (4)

Since Vi is a part of V (Y ), this sensitivity measure
is a fraction, SFO

Y,i ∈ [0, 1]. The larger the fractional
contribution of a particular input, the more sensitive
the output parameter is to this input. Instead of
fractions, SIs are commonly represented as percent-
age. The sensitivities of the model depend on which
parameter is taken as output. Therefore, it is impor-
tant to specify the output parameter for which the
sensitivities are determined.

As seen in Equation (1), parameter Xi can also
contribute to the output variance through interac-
tions with other parameters. Therefore, the total-
effect (TE) SI is used, which includes the direct
effect of Xi, plus the effect of interactions of Xi with
all other inputs Xj(,...,Xk).

[23] It is given as

STE
Y,i =

Vi + Vij + · · ·+ Vi..k

V (Y )
:=

VTi

V (Y )
. (5)

The two types of SIs represent respectively the
highest (STE

Y,i ) and lowest (SFO
Y,i ) measures for the con-
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tribution of parameter Xi to Y , as the former in-
cludes the latter plus possible interaction terms be-
tween various inputs. [24] Consequently,

STE
Y,i ≥ SFO

Y,i . (6)

2.3 Parameter sampling

The variance terms for the first-order and total-effect
SIs are determined using a Monte-Carlo simulation,
in which the input parameters are sampled from a
range of values. These ranges of the different input
parameters are defined prior to the analysis and can
for example be obtained from experimental results or
literature. A simple sampling method is taking sam-
ples randomly from the input parameter space. How-
ever, a quasi-random sampling sequence is preferred,
as it explores the input parameter space more effi-
ciently, thus requiring fewer samples, see Burhenne
et al. [25] for comparisons. Furthermore, it allows for
sequential addition of samples. As such, the number
of samples can efficiently be extended until the pa-
rameter space is sufficiently explored and convergence
of the analysis results is achieved, see Section 2.4 for
more details. A number of quasi-random sequences
have been developed, such as by Halton, Niederreiter,
Faure and Sobol’, of which some have been reviewed
in Bratley et al. [26] In this work, we restrict to the
Sobol’ sequence as quasi-random sequence of choice.

A set of values is generated on the unit hypercube,
in dimension equal to twice the amount of input pa-
rameters (2k). Initially, this set is generated N times,
i.e. for N (initial) samples. A next set of N samples
is generated from the Sobol’ sequence at each addi-
tional sampling iteration. We then derive the sample
variance terms following Saltelli et al. [23] As small
example, we take k = 2 input parameters and N = 2
samples. The generated Sobol’ sequence matrix of
this sampling iteration yields

SOBseq = N

y
2k−−−−−−−−−−−−−−−−−→[

x1,1 x1,2 x1,3 x1,4︸ ︷︷ ︸
A

x2,1 x2,2 ︸ ︷︷ ︸
B

x2,3 x2,4

]
. (7)

The first (left) and second (right) half of the sampled
dimensions are used separately in the estimators of

the variance terms. Hence, we define these as ma-
trix A and B, respectively, see Equation (7). From

these matrices, a new set of matrices AB = {A(i)
B } is

created, where A
(i)
B = A except column i is the i-th

column of B. In case of our example, this yields

A
(1)
B =

[
x1,3 x1,2

x2,3 x2,2

]
, (8)

A
(2)
B =

[
x1,1 x1,4

x2,1 x2,4

]
, (9)

where the terms are taken from A and from B. The
general matrix representation of the Sobol’ sequence
of Equation (7) and AB (8, 9) for any number of
input parameters is given in Supporting Information
Section S1. The expressions of the variance terms for
the first-order, Vi, and total-effect SIs, VTi, in Equa-
tions (4) and (5) respectively, are derived as [23,24]

Vi = V (Y )− 1

2N

N∑
j=1

(
f ((B)j)− f

((
A

(i)
B

)
j

))2

,

(10)

VTi =
1

2N

N∑
j=1

(
f ((A)j)− f

((
A

(i)
B

)
j

))2

, (11)

where (A)j denotes the j-th row of A.

2.4 Convergence of results

As the number of samples is increased and the param-
eter input space is further explored, the SIs converge
towards a stable value. However, there are different
definitions of what constitutes sufficient convergence.
Three different types of convergence can be used: [11]

(a) Convergence of screening, which groups in-
put parameters based on influence on output
variance: influential or (approximately) non-
influential parameters;

(b) Convergence of ranking, which sorts all param-
eters based on their influence;

(c) Full convergence of the SIs, which provides nu-
merical expressions of the influence of each pa-
rameter.
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Generally, the minimum number of samples increases
with the three types of convergence. It is there-
fore useful to assess prior to analysis what kind of
convergence is necessary. For example, in case of a
complex model with significant run time, computa-
tional limitations could be an argument for the use
of screening or ranking convergence. On the other
hand, while convergence of ranking gives a good indi-
cation of which parameters are more influential than
others, it does not encompass information on the dif-
ference in influence between subsequently ranked pa-
rameters. This information is only available with full
convergence of the SIs. As the prominence of these
advantages/disadvantages depends on the model and
the use-case, such trade-offs have to be made on a
case-to-case basis (refer to Section 5).

Each of the three convergence types can be quan-
tified with different numerical convergence criteria,
which we evaluate in the following.

2.4.a Convergence of screening

Parameter screening is achieved when the input pa-
rameters are categorized in a set of influential and a
set of non-influential parameters with sufficient cer-
tainty. Generally, the group of non-influential pa-
rameters also includes parameters with a small influ-
ence, that are still categorized as negligible. [11,17,27]

This requires a predefined influence threshold which
splits the parameters into these groups. A possible
measure for parameter screening convergence is that
the sensitivity indices of the parameters within the
group of non-influential parameters should have con-
verged. [11] To this end, the same index convergence
criterion and bootstrapping method can be employed
as for the convergence of indices described in Section
2.4.c. To make sure that the obtained parameters
are indeed non-influential, the screening results have
to be validated, for instance through use of the Kol-
mogorov–Smirnov (KS) test, further detailed in Sar-
razin et al. [11]

2.4.b Convergence of ranking

Convergence of ranking sorts parameters based on
their influence on output variability. Akin to screen-

ing, ranking requires a measure which signals suf-
ficient convergence of the ranking order. Various
measures exist, such as Spearman’s rank correla-
tion coefficient. [28] However, these do not differenti-
ate between rank reversals of high-influence and low-
influence parameters, even though the latter are of-
ten of little interest. Hence, in this work we use a
weighted rank correlation coefficient ρ, [11,29]

ρ =
∑k

i=1

(
|Rm

i −Rn
i |

max
m,n

(Sm
Y,i,S

n
Y,i)

2

∑k
i=1 max

m,n
(Sm

Y,i,S
n
Y,i)

2

)
, (12)

where Sm
Y,i and Sn

Y,i are the SIs of Xi at subsequent
sampling iterations m and n and Rm

i and Rn
i are the

ranks of these SIs. The fractional term of the SIs
in Equation (12) is the weighting term. This term
is introduced such that the parameter influence on
the correlation term is in proportion to the parame-
ter sensitivity, increasing the importance of higher SI
parameters, while downplaying the the inputs with
smaller SI values.

Based on the correlation coefficient, a criterion for
ranking convergence can be defined. A reasonable
measure is that the 95-percentile of correlation co-
efficients of the sequentially increasing sample sets
should fall below a critical value ρcrit,

[11]

Q95%(ρ) < ρcrit. (13)

Setting ρcrit = 1, ensures that the ranking of each
parameter varies on average by at most 1 position.

2.4.c Full convergence of indices

To analyze full numerical convergence of the sensi-
tivity indices, a confidence bound on the SI values
is defined based on bootstrapping. Bootstrapping
is a commonly used method to obtain a confidence
measure of the degree in which the calculated SIs
approach the ’true’ SIs (i.e., when the SIs are deter-
mined from infinite samples). [30,31] In short, in boot-
strapping, the samples taken so far, NT, are resam-
pled repeatedly with replacement: Every time, a set
of NT samples is randomly drawn from the original
set with probability 1/NT, with the possibility that
samples are repeated. The SIs calculated from these
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resampled sets can be used to determine an approxi-
mation of the SI distribution. In this work, we use the
95-percentile interval of this bootstrap distribution as
the confidence bound (cx), i.e. under assumption that
the bootstrap curve is normal, the 95-percentile lies
within [−cx,+cx] from the bootstrap mean. In this
case,

cx = Q95%(sx) (14)

where sx is the bootstrap SI sample standard devi-
ation, x refers to either the first order or total ef-
fect indices calculated for each bootstrap resample
x = SFO

Y , STE
Y . Since the error of both first order

and total effect indices should fall within margin, we
determine the convergence based on the maximum
error,

cmax = max{cSFO
, cSTE

} (15)

This value is compared to a threshold value ccrit.
When the error value falls below the desired thresh-
old, this is deemed sufficient convergence,

cmax < ccrit. (16)

3 Case Study 1: CO oxidation

The first application case of Sobol’s method in this
study is a microkinetic model of the oxidation of car-
bon monoxide, which is a typical prototype reaction
of heterogeneous catalysis.

3.1 Microkinetic model

The four-step reaction mechanism used in this study
follows Falsig et al. [32] and consists of CO and
O2 adsorption, dissociative adsorption of O2 and a
Langmuir-Henshelwood type surface reaction to form
CO2.

CO(g) + ∗ −−⇀↽−− CO∗, (17)

O2(g) + ∗ −−⇀↽−− O2
∗, (18)

O2
∗ + ∗ −−⇀↽−− 2O∗, (19)

CO∗ +O∗ −−⇀↽−− CO2(g) + 2 ∗, (20)

where ∗ represents a free surface site.

The microkinetic model is based on Grabow et
al. [33] and describes the evolution of the coverages
of the reaction intermediates (CO, O2, O) in a state-
space system, which is generally represented as

∂x(t)

∂t
= f(x(t), u(t)), (21)

y = g(x(t), u(t)). (22)

In this case, each state describes the evolution of
one intermediate species, x = [θCO, θO2 , θO], where
θγ represents the surface coverage of intermediate γ
(θγ ∈ [0, 1]). The system is described by the following
ordinary differential equations (ODEs),

dθCO

dt
= r1 − r4, (23)

dθO2

dt
= r2 − r3, (24)

dθO
dt

= 2r3 − r4, (25)

where r1, r2, r3 and r4 represent the net rates of
the four elementary steps in Equations (17), (18),
(19) and (20), respectively. These rates are given as
follows

r1 = k+1 PCOθ∗ − k−1 θCO, (26)

r2 = k+2 PO2
θ∗ − k−2 θO2

, (27)

r3 = k+3 θO2θ∗ − k−3 θ
2
O, (28)

r4 = k+4 θCOθO − k−4 PCO2
θ2∗, (29)

where k+ι and k−ι for ι = 1, 2, 3, 4 refer to the for-
ward and reverse rate constants, respectively. PCO,
PO2

and PCO2
represent partial pressures, which are

predefined. The fraction of empty surface sites is rep-
resented by

θ∗ = 1− θCO − θO2 − θO. (30)

The reaction rate constants are determined using the
standard Arrhenius equation, which relies on the pre-
exponential factor νι and activation energy Ea

kι = νι exp

(
−Ea,ι

kBT

)
. (31)
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We can determine the pre-exponential factor from
the change in entropy, ∆S‡

ι , between the initial state
of the reaction and the transition state, [33]

νι =
kBT

h
exp

(
∆S‡

ι

kB

)
. (32)

It is assumed here that this entropy change is zero
for the surface reactions in Equations (19) and (20),
as the reactants and transition states are adsorbed
species. It is further assumed that the entropy change
for reactions in Equations (17) and (18) amounts to a
loss of 25% from the initial state, in line with Grabow
et al. [33]

Following Falsig et al. [32], we consider non-
activated and fast adsorption of CO and O2. Fur-
thermore, we assume that these reactions are quasi-
equilibrated: The temperature range is high enough
such that (also) the desorption is fast, and does not
vary with temperature. Therefore, ∆Ea,1 = 0 and
∆Ea,2 = 0. The activation energy of reaction steps
in Equations (19) and (20) are determined from scal-
ing relations identified in Falsig et al. [32] and can be
expressed in the chemisorption energies of CO and O
exclusively,

∆Ea,3 = 0.5 ·∆EO + 1.39 eV (33)

∆Ea,4 = −0.3 · (∆EO +∆ECO) + 0.02 eV. (34)

The values of these scaling relations are kept constant
in this analysis. A more detailed SA, which is beyond
the focus of this paper, could also include the influ-
ence of varying the scaling relation terms to assess
the sensitivity towards the scaling relations.

We note furthermore that the model does not take
into account the effect of lateral interactions of the
adsorbates. Temperature and pressure affect the
adsorbate configurations on a mesoscopic scale. [34]

As such, these parameters have an additional effect
on the adsorption energies. The lateral interactions
could be studied by implementing different reaction
rates dependent on the lateral interaction energies
for all possible adsorbate configurations. Such mi-
croscopic lateral interaction energies have previously
been determined using DFT for CO oxidation on
Pt(111) surfaces with preadsorbed oxygen. [35] Such
analysis can be implemented in a follow-up study.

3.2 Input parameters

For the sensitivity analysis of the CO oxidation model
we vary six input parameters: The temperature T at
which the oxidation takes place, the oxygen, carbon
monoxide, and carbon dioxide pressures (PO2

, PCO

and PCO2
, respectively), and the chemisorption en-

ergies of CO and O (∆ECO and ∆EO). The ranges
of the values of the different parameters are summa-
rized in Table 1. These values are substantiated by
their occurrence in theoretical work, experiments or
simulations, which are denoted in the reference col-
umn in Table 1. The amount of data points available
for these parameters is limited. Therefore, we choose
to make no presumptions about the probabilities of
specific values and regard the probability distribution
of the values as a continuous uniform distribution,
bounded by the values defined in Table 1. Instead
of, for instance, defining the probability as Gaussian
distribution around a nominal value, or assuming a
log-uniform distribution where the distribution is uni-
form along the logarithmic of the parameter. Some
important notes on the parameter values and refer-
ences are given in the following:

• We focus on high temperature CO oxidation,
hence, the temperature ranges between T =
300− 800 K.

• The partial pressures are assumed to be at in-
dustrial conditions, i.e. around the order of 1 bar,
which is several orders higher than typical exper-
imental conditions. [36,37]

• The chemisorption energies of CO and O have
been varied around the values for platinum,
which is found to be one of the most ac-
tive catalysts for high temperature CO oxi-
dation, ∆EO,Pt = −1.25 eV and ∆ECO,Pt =
−1.22 eV. [33]

3.3 Sensitivity analysis

The sensitivity analysis is conducted using MAT-
LAB. The stiff ODE solver ’ode15s’ is used at default
settings to obtain a numerical solution of the model.
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Table 1: List of parameters, descriptions and value ranges of the CO oxidation model sensitivity analysis.

Parameters Symbol Parameter description Unit Minimum Maximum References

T Temperature [K] 3.00× 102 8.00× 102 [38]

PCO Pressure of CO [bar] 1.00× 10−2 1.00× 101 [36,37]

PO2
Pressure of O2 [bar] 1.00× 10−2 1.00× 101 [36,37]Reaction conditions

PCO2
Pressure of CO2 [bar] 1.00× 10−2 1.00× 101 [36,37]

∆ECO Chemisorption energy of CO [eV] −1.50 −1.00 [33]

Descriptors
∆EO Chemisorption energy of O [eV] −1.50 −1.00 [33]

The model is solved in the time domain until equilib-
rium is reached (∼ 3ms CPU-time per Quasi-Monte-
Carlo point). Alternatively, the equilibrium can be
found by setting the ODE derivatives to zero and
solving the algebraic equations. Due to the limited
complexity of the CO oxidation model and limited
number of parameters, achieving full convergence of
the sensitivity indices is achieved within a reason-
able time frame. Hence, we skip the convergence of
parameter screening and ranking and look directly
at the fully converged indices. The sensitivity of a
model is always determined with respect to a specific
output parameter. Therefore, by choosing different
output parameters for the analysis, different sensitiv-
ities of the model can be explored. We show this for
the CO oxidation model by performing two sensitiv-
ity analyses, with respect to the surface coverage val-
ues of CO, θCO, and, O2, θO2

, respectively. Another
important model output parameter is the turnover
frequency (TOF), which represents the rate at which
chemical conversions occur, and is a measure for the
efficiency of the catalyst. [39] The sensitivity analysis
conducted with respect to the TOF is given in Sup-
porting Information Section S3.

Regarding the model output θCO, the first-order
(FO) and total-effect (TE) SIs are shown in Figure
2. Here, we have ensured convergence of the SIs to a
confidence bound critical threshold of ccrit = 1%. We
find that the temperature is the primary contribution
to the output sensitivity, both directly (FO) and in
interaction with other parameters (TE). The second
greatest contribution is the chemisorption energy of
CO, ∆ECO. This is related to the fact that ∆ECO

is involved in two reactions, i.e. Equations (17) and
(20), and is therefore a prominent term to determine

the evolution of the surface coverage of CO in Equa-
tion (23).
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Figure 2: First-order and total-effect sensitivity in-
dices SθCO

of the CO oxidation model with respect
to output θCO and the input parameters denoted in
Table 1. Convergence is ensured to 95-percentile in-
terval below ccrit = 1%.

Furthermore, we find that the partial pressure pa-
rameters PO2

and PCO2
have a minimal influence on

θCO. This is primarily striking for PCO2
, since θCO

depends directly on this partial pressure in Equation
(26). However, the reverse rate constant of the sur-
face reaction k−4 is generally small, which diminishes
the effect of PCO2 . Due to the negligible sensitivi-
ties to these pressures, any value within the respec-
tive range can be used without significant impact on
the analysis. This is referred to as Factor Fixing. [1]

To illustrate this, the two marginal partial pressures
are resolved to their highest range boundary value
and the sensitivity analysis is repeated against the
four remaining parameters. The results are shown in
Figure 3. Compared to Figure 2, only minor differ-
ences can be detected: The influence of the remaining
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parameters is consistent with the aforementioned re-
sults (similar SI values), and the output variance is
minimally impacted: 1.69× 10−1 for the smaller pa-
rameter set (Figure 3) versus 1.66×10−1 for the larger
parameter set (Figure 2). Note that the larger value
of the variance for the smaller parameter set can be
explained by the marginally small, but not completely
zero, influence of PO2

and PCO2
: Depending on the

chosen value, the variance can either slightly increase
or slightly decrease. Resolving the partial pressures
affects the analysis runtime, which has decreased by
approximately 20% compared to the original analy-
sis.
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Figure 3: First-order and total-effect sensitivity in-
dices SθCO

of the CO oxidation model with respect
to output θCO and the input parameters denoted in
Table 1, excluding PO2

and PCO2
. Convergence is

ensured to 95-percentile interval below ccrit = 1%.

Regarding the model output θO2
, the correspond-

ing SIs are shown in Figure 4. The parameters T ,
∆ECO and ∆EO have similar SIs, with a total ef-
fect of 60-70%. As in Figure 2, there is relatively
small influence of the pressure parameters. However,
in this case PO2

is not negligible, likely due to the di-
rect dependence in Equation (27). Furthermore, we
find that in the analysis for θO2 , there is a large dif-
ference between first order and total effect SIs. This
indicates significant interactions between the input
parameters. Therefore, the uncertainty in the θO2

output cannot be attributed to a single input in par-
ticular but rather to a combination of inputs.
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Figure 4: First-order and total-effect sensitivity in-
dices of the CO oxidation model with respect to θO2

as output and the input parameters described in Ta-
ble 1. Convergence is ensured to 95-percentile inter-
val below scrit = 3%.

3.4 Sample visualization

The sensitivity indices are a quantitative expression
of the influence of the input parameters. Hence, it
does not show the impact of a specific input value on
the output (whether it increases or decreases). This
can be visualized using model samples as generated
for Sobol’s sensitivity analysis. [40] This type of qual-
itative analysis can indicate what parameter values
lead to desirable system output.

A useful visualization method plots the sample in-
put/output values for each input parameter. The
distribution of these samples indicates the sensitiv-
ity to that input. Often, these patterns can instantly
be recognized. However, in cases when the sample
density is high overall, the number of data points
might obstruct detecting patterns. We therefore pro-
pose a visualization method in which the samples
are incorporated in a three-dimensional histogram.
The height or color of the bars represent the amount
of samples within the range of the bar (the number
of samples per grid cell). Using the CO oxidation
model as example, we visualize output samples of θCO

against the sampled values of inputs T and PCO in a
three-dimensional histogram, see a) and b) in Figure
5, respectively. The absolute density values depend
on the number of samples taken and is therefore of
little relevance. Instead, the focus should be on the
relative distribution.
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In both examples in Figure 5, most samples are
located around θCO ≈ 0 or θCO ≈ 1. However, for
the variation of temperature, T (Figure 5a), a clear
non-uniformity in the distribution on the Y-axis with
respect to the X-axis can be observed. At low temper-
ature, the surface is in most cases completely covered
by CO (θCO ≈ 1), whereas at high temperatures, al-
most no CO is adsorbed on the surface (θCO ≈ 0).
Similar sample visualizations for θO2

and θO are given
in Supporting Information Section S2 and show rela-
tively low coverage values over the entire temperature
range, indicating that these species do not replace CO
at high temperature. Instead, at high temperatures
the surface sites are predominantly empty (Support-
ing Information Section S2). This can be expected:
Following the Arrhenius equation, the oxidation re-
action rate generally increases with the temperature.
Hence, at a higher temperature, the CO would be
completely converted into CO2. The large tempera-
ture dependence shown here is directly related to the
large SI of the temperature in Figure 2. Vice versa,
a more uniform sample distribution such as observed
for PCO (Figure 5b), can indicate that a parameter is
non-influential [1] (Note the small SI for PCO in Figure
2).

4 Case Study 2: Oxygen evolu-
tion reaction (OER)

The second application case for sensitivity analysis
using Sobol’s method, is a model of water splitting
in a photo-electrochemical cell (PEC). In this cell, the
formation of hydrogen occurs at a metallic cathode,
whereas the oxygen formation occurs at a semicon-
ductor photoanode. The sustainable generation of
hydrogen as energy carrier is a promising develop-
ment in the shift towards renewable energy, as a way
to deal with the intermittency of renewables, such as
solar and wind energy.

4.1 Microkinetic model

The model for this case is derived from George et
al. [41] and describes the OER occurring at the pho-

toanode under alkaline conditions. The reaction steps
are as follows,

∗ + OH− + h+
Kf1−−⇀↽−−−
Kb1

OH∗, (35)

OH∗ +OH− + h+
Kf2−−⇀↽−−−
Kb2

O∗ +H2O, (36)

O∗ +OH− + h+
Kf3−−⇀↽−−−
Kb3

OOH∗, (37)

OOH∗ +OH− + h+
Kf4−−⇀↽−−−
Kb4

O2
∗ +H2O, (38)

where ∗ describes an adsorption site on the anode
surface, and ∗ used as superscript, i.e. X∗, indicates
a surface adsorbed species. These processes are cap-
tured in a 4th-order state-space system of ordinary
differential equations (ODEs), generally represented
by Equations (21) and (22). The ’4th-order’ terminol-
ogy refers to the presence of four states in the system,
which in this case are the surface coverages of the four
intermediate species, x = [θOH, θO, θOOH, θO2 ]. The
evolution of each state is described by an ODE. In the
analysis, the current density at equilibrium is chosen
as the model output to which the sensitivity is deter-
mined, at fixed values of the applied potential uapp.
The explicit expressions of the microkinetic model
follow George et al. [41] and are denoted in Support-
ing Information Section S4.

4.2 Input parameters

The SA of the OER model investigates 14 input pa-
rameters, which are subject to varying degrees of un-
certainty. The parameters, their ranges and corre-
sponding literature references are denoted in Table
2. As explained for case study 1, we analyze the pa-
rameters based on a uniform probability distribution.

4.3 Sensitivity analysis

The OER model is more complex and contains more
parameters than the CO oxidation model in Section
3. Therefore, we only omit the parameter screening
step and first analyze the ranking of the parameters,
before continuing with the full convergence of the
SIs. The sensitivity analysis is conducted using the
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a) b)

Figure 5: CO oxidation model input/output sample visualization using three-dimensional histogram. The
output θCO is visualized against the parameter a) T and b) PCO. The color represents the number of
samples within the corresponding box. The sample distribution with respect to the parameter T is non-
uniform, whereas the distribution against PCO is approximately uniform.

Table 2: List of input parameters of the 4th order oxygen evolution reaction model with lower and upper
boundaries of their value ranges.

Parameters Symbol Name Unit Minimum Maximum References

Thermodynamic

pOH Electrolyte pOH - 0 1 [42–44]

T Temperature [K] 293 303 [45]

NV VB density of states [cm−3] 4.60× 1019 1.00× 1022 [46,47]

ns0 El. density in the dark [cm−3] 2.70× 1017 6.00× 1020 [46,48,49]

ps0 Hole density in the dark [cm−3] 1.00 1.00× 102 [46,50]

N0 Adsorption site no. under r-SS [cm−2] 2.39× 1014 2.43× 1015 [48]

λ Solvent reorganization energy [eV] 2.30 2.65 [51]

∆G1 Gibbs free energy of OER step 1 [eV] 1.82 1.92 [48,52]

∆G2 Gibbs free energy of OER step 2 [eV] 1.92 2.02 [48,52]

∆G3 Gibbs free energy of OER step 3 [eV] 0.92 1.02 [48,52]

∆G4 Gibbs free energy of OER step 4 [eV] 0.06 0.16 [48,52]

EV VB energy level (hematite) [eV] 2.40 2.70 [53–56]

Kinetic
kvf,max VB max rate constant (forward) [cm4 s−1] 1.00× 10−17 1.00× 10−16 [57]

kf5 Oxygen desorption rate [s−1] 9× 10−12 98 [58–61]

’ode15s’ solver in MATLAB, with default settings.
Using the method and the convergence criterion de-
tailed in Section 2.4.b (ρcrit = 1), and at an applied
voltage value of uapp = 1.3V, the parameter ranking
is denoted in Table 3. A higher rank indicates a larger
influence of on the output variability. Hence, the out-
put has the strongest sensitivity to EV and λ and the

weakest sensitivity to NV and ns0. This ordering can
be used as a basis for further parameter research: By
decreasing uncertainty of parameters that drive the
variability of the output the most, this variability can
be decreased most efficiently. This is referred to as
Factor Prioritization. [1,62]
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Table 3: Parameter ranking of OER model at ranking
convergence.

Rank Parameter
1 EV

2 λ
3 pOH
4 kvf,max

5 ps0
6 N0

7 T
8 ∆G2

9 ∆G1

10 Kf5

11 ∆G3

12 ∆G4

13 NV

14 ns0

The parameter ranking only shows the relative in-
fluence on the model output. Hence, it does not in-
dicate the significance of the influence of each pa-
rameter. Hence, for further analysis, we look at the
fully converged SIs. The SIs describing the sensitivity
of the current density towards the 14 inputs, for an
applied potential of uapp = 1.3V are represented in
Figure 6. We confirm that the parameters EV and λ
have both the largest first-order and total-effect SIs.
Furthermore, we find in Figure 6, that six parameters
have an approximately negligible influence, i.e. Kf5,
NV , ns0, ∆G1, ∆G3 and ∆G4. We find that per-
forming the SA excluding these parameters does not
significantly affect the output uncertainty (4.8×10−4

to 5.5 × 10−4) nor the SIs (see Supporting Informa-
tion Section S5), but it is advantageous because it
decreases the runtime. Moreover, we find that some
of the parameters that are not well-known from the
literature, such as the oxygen desorption rate Kf5,
have minimal influence on the model output. SA can
thus indicate at an early stage that further research
on a certain parameter is not of the highest priority
to decrease output variance.

Additionally, we note a significant difference be-
tween first-order and total-effect indices, pointing to-
wards prominent interactions between input parame-

ters. To further the analysis, it could be of interest to
derive second-order effect SIs to study which param-
eters have the strongest combined effects. These low-
order effects have been shown to typically encompass
most of the interaction effects. [63] This information
can be used to combine subsets of the input param-
eters to obtain a smaller set of primitive parameters
that have proportionately larger first-order effects.
Such analysis is outside the scope of this work. In
a following study, analysis of the second-order effects
will be incorporated.
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Figure 6: First-order and total-effect SIs SOER of the
parameters in the 4th order OER model at applied
potential of uapp = 1.3V. Convergence is ensured to
a 95-percentile interval below ccrit = 5%.

Finally, as validation of the SA results, we look at
the statistics of the convergence over the sampling
iterations. The three convergence measures defined
in Section 2.4, (a) screening, (b) ranking and (c) full
convergence, are plotted against the sampling itera-
tions, see Figure 7, with cmax the 95-percentile in-
terval of the bootstrapped SIs, (Section 2.4.c) and
Q95%(ρ) the 95-percentile of rank correlation coeffi-
cients (Section 2.4.b). Convergence is achieved when
the measures cross over a threshold (black dash-dot
line). At the cross-over (red-dashed line) the re-
quired iterations Nit are indicated. For (a) and (c),
this threshold is ccrit = 5%, i.e. the 95-percentile
of bootstrapped samples deviate at most 5% from
the original sample set. For (b), the threshold is
ρcrit = 1, as discussed in Section 2.4.b. As expected,
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we find that the full convergence of the indices is
more costly, in a computational sense, than the con-
vergence of ranking. Furthermore, we find that all
three measures generally decrease with the sampling
iterations. However, for (a) and (c), significant up-
ward jumps can be observed, at which the error in-
creases. This is likely due to parameter interactions:
Specific combinations of samples, that might only ap-
pear at later sampling iterations, strongly affect the
sensitivity indices. To substantiate this, the interac-
tions (STE−SFO) of each of the parameters have been
plotted against the sampling iterations (Supporting
Information Section S6). The jump in (c) at Nit=338

corresponds with an approximate doubling of the in-
teraction term of parameter ps0 while the other pa-
rameters are largely unaffected. For (b), we observe
that the 95-percentile of the correlation coefficient
decreases step-wise with the sampling iterations.

Convergence statistics
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Figure 7: Screening (a), ranking (b) and full conver-
gence (c) of the indices for the OER analysis, using
their respective convergence measures. The conver-
gence thresholds are indicated (black dash-dot), as
well as the iteration number Nit at which the thresh-
old is crossed (red dashed). For (a) and (c) cmax is the
95-percentile interval of the bootstrapped SIs. For
(b) Q95%(ρ) is the 95-percentile value of the weighted
rank correlation coefficient. The three measures re-
quire increasing sampling iterations to convergence:
(a) Nit = 2; (b) Nit = 31; (c) Nit = 2277.

4.4 Sample visualization

In order to get an idea of the tendency of the cur-
rent density with respect to the input parameters,
the input/output samples are visualized. This is com-
monly referred to as Factor Mapping. [1] The output
samples are plotted against the sampled input pa-
rameters at an applied voltage value of uapp = 1.3V,
see Figure 8. This direct visualization of the samples
shows for some parameters a strong non-uniformity
of the sample distribution over different parameter
values, e.g. for EV and λ. Looking at EV in detail,
we see for example that the maximum value attain-
able value of the current density appears to increase
exponentially with the value of EV. From this, we
can conclude that higher values of the current den-
sity can be achieved when the valence band energy
level, EV, is larger. Contrarily, there are other pa-
rameters for which the possible output values are not
dependent on the specific parameter values, e.g. NV.
For this less-influential parameter, the distribution of
samples across the current density range is approxi-
mately equal for all NV values. These observations
corroborate to the obtained sensitivity indices of the
parameters. Such visualizations can be used to detect
what parameter values lead to desirable or undesir-
able model output behavior.

5 Concluding Discussion

This study presents an explanation and implementa-
tion of Sobol’s global variance-based sensitivity anal-
ysis method for chemical modeling. We successfully
demonstrated the application of this method on two
cases from the field of microkinetic modeling. Addi-
tionally, we present informative visualizations of the
model sensitivity and the response of the model to
varying inputs. The presented analyses are able to
uncover essential information from the microkinetic
models, such as:

• The parameters with large direct influence terms
and/or the largest interaction terms: These pa-
rameters represent the largest contribution to
the output uncertainty, which could be a motiva-
tion for further investigation of these parameters
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Figure 8: Monte-Carlo samples of model output, current density j, against input parameters at uapp = 1.3V.

both in modeling and in experiments.

• An overview of non-influential parameters: The
effect of these parameters on the model are neg-
ligible, such that further efforts to decrease the
uncertainty of these parameters do not affect the
accuracy of the simulations. This could advocate
for omitting these parameters when assigning of-
ten limited time resources for further study in
the modeling process.

• The trend of the output with respect to each in-
put parameter, if present: When aiming to im-
prove the modeled system, this can be used to
relate desirable or undesirable output behavior
to parameter ranges of the input parameters.

Furthermore, in this study we highlight the impact
of three commonly used criteria for the convergence
of the analysis parameters: (a) parameter screening,
(b) ranking and (c) full convergence of the sensitiv-
ity indices. For complex models, sensitivity analysis

and, in particular, the global variance-based kind, is a
computationally expensive and time costly operation.
In order to perform sensitivity analysis in such cases,
it could prove vital to pursue the computationally
cheaper convergence of parameter screening or rank-
ing, as well as resolving non-influential parameters
(Factor Fixing). We propose the following workflow
to decrease model output variance using sensitivity
analysis in a computationally efficient manner (Fig-
ure 9):

1. Define initial parameter ranges of the input pa-
rameters to be included in the analysis.

2. Perform sensitivity analysis; Depending on the
information required, choose between the con-
vergence measures: (a) screening, (b) ranking,
or (c) full convergence.

3. Check if the achieved output variance falls below
the desired threshold for uncertainty.
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4. If no: Refine the input parameters based on the
choice in step 2; For (a) and (c): the identi-
fied non-influential parameters can be fixed to
any value on their ranges, removing them from
further analysis, and/or for (b) and (c): in-
depth parameter research can be performed on
the most influential parameters. Subsequently,
repeat the analysis from step 2 until the output
uncertainty is sufficiently small, i.e. until the un-
certainty threshold is crossed.

5. If yes: The output uncertainty is below the de-
sired threshold. The model output can be deter-
mined with a level of confidence based on this
threshold.

In order to aid application of Sobol’s method on
other models within the field of chemical modeling,
we have structured the method in this work as a sep-
arate framework, which does not inherently rely on a
specific chemical model. The framework provides the
model inputs for each Monte-Carlo simulation, and
processes the model outputs into the sensitivity in-
dices and visualizations. As such, other models can
be analyzed in conjunction with this method, with
only minor alterations to the modeling code.

1. De ne initial parameter ranges 

2. Sensitivity analysis

4. Re ne 
parameter 

ranges

3. Output 
uncertainty

threshold

a) 
Screening

b) 
Ranking

c) Full 
convergence

5. Use model 
output

No Yes

Figure 9: Analysis workflow to decrease model out-
put variance using sensitivity analysis in a com-
putationally efficient manner. The analysis is re-
peated when changes are made to the input parame-
ter ranges.
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7 Table of Contents

Sobol’s sensitivity analysis method is presented for chemical modeling with a focus on microkinetic modeling.
Its application is demonstrated with two case studies: (1) CO oxidation, (2) oxygen evolution reaction in a
photo-electrochemical cell. The results show how each input parameter influences the output uncertainty.
A workflow is proposed aimed at reducing output uncertainty and validating and optimizing the model.
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