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Abstract

The exploration of two-dimensional (2D) materials with exceptional physical and

chemical properties is essential for the advancement of solar water splitting technolo-

gies. However, the discovery of 2D materials is currently heavily reliant on fragmented

studies with limited opportunities for fine-tuning the chemical composition and elec-

tronic features of compounds. Starting from the V2DB digital library as a resource

of 2D materials, we set up and execute a funnel approach that incorporates multiple

screening steps to uncover potential candidates for photocatalytic water splitting. The

initial screening step is based upon machine learning (ML) predicted properties, and

subsequent steps involve first-principles modeling of increasing complexity, going from

DFT to hybrid-DFT to GW calculations. Ensuring that at each stage more complex

calculations are only applied to the most promising candidates, our study introduces

an effective screening methodology that may serve as a model for accelerating 2D ma-

terials discovery within a large chemical space. Our screening process yields a selection

of 11 promising 2D photocatalysts.
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In future energy systems, hydrogen (H2) is expected to have a prominent position as

an energy carrier. As such, it is imperative that we produce hydrogen in an efficient and

environmentally sustainable manner. In recent years, solar water splitting as a means of

producing H2 has gained significant interest; however, the efficacy of the process is heavily

constrained by the performance of the photocatalysts.1,2 Due to the maximal specific sur-

face area, abundant active sites, short carrier migration distance, and appreciable sunlight

absorption, 2D materials are regarded as promising candidates for serving as photocatalysts

in the conversion of solar energy into valuable H2 fuel.3,4 Motivated by these advantages,

the pursuit of new 2D photocatalysts has garnered increasing attention in recent years.5–8

There is still a pressing need to find new 2D photocatalysts, given the stringent criteria they

should meet, such as possessing a moderate band gap to maximize solar energy absorption

and appropriate band edge positions to align with the water redox potentials.9,10

The field of material exploration has evolved into a new era characterized by big data and

powerful ML algorithms, in relation to the remarkable growth in computing power and avail-

able computational data.11,12 In recent years, several computational material databases for

2D materials have been developed,13,14 which allow the use of ML techniques to uncover in-

tricate correlations within the material space and accurately predict material properties.15,16

With the rapid prediction power of ML models, large chemical space of 2D materials can

be screened based on the predictions of key properties and more accurate computational

methods such as density functional theory (DFT) can be employed to expeditiously ver-

ify these predictions and create new training data for the models to extend the screening

boundaries.17–21

In this study, we screen the Virtual 2D Materials Database (V2DB),22 which contains

a total of 316,505 potentially stable 2D materials with ML-predicted properties, to identify

potential 2D photocatalysts for solar water splitting. To achieve this objective, we design a

funnel workflow that leverages the existing data within V2DB, evaluates the uncertainty of

ML-predicted properties through a newly developed meta-model, and performs multi-step
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first-principles calculations for promising candidates. Figure 1 illustrates the three principal

stages of our workflow, which are color-coded in blue, orange, and yellow, and each of these

stages comprises multiple steps. During the initial stage, we employed a combination of

filtering criteria based on ML-predicted electronic properties and manual screening proce-

dures to down-select promising photocatalysts. Next, we conduct PBE-level DFT computa-

tions, which encompass structural optimizations, band gap calculations, phonon dispersion

calculations, and ab initio molecular dynamics (AIMD) simulations to identify stable 2D

semiconductor photocatalysts. Finally, we utilize high-level calculation methods, including

HSE06 and G0W0, to obtain accurate electronic properties and assess the photocatalytic wa-

ter splitting potential of the top 2D semiconductor candidates. As a result of our screening

approach, we identify 11 2D material candidates as promising photocatalysts for water split-

ting. Our study not only puts forward new 2D semiconductor photocatalyst candidates for

deeper investigation but also presents an effective ML-assisted physics-based computational

screening approach that could inspire future searches for functional 2D materials.

The ML-predicted properties within V2DB, such as electronic band gap and band edges,

are derived from training on DFT data at the PBE-level. Compared to standard DFT meth-

ods, the GW method including many-body effects can give a more accurate description of

electronic properties, band gaps and band edge positions in particular, which are key prop-

erties for assessing the applicability of materials for solar water splitting. By applying a

regression study between PBE and G0W0 electronic properties of 2D materials,22 the associ-

ated predicted G0W0 band gaps and band edge positions were also collected in V2DB, which

are used in the current work to screen potential semiconductor photocatalysts. The light-

colored parts of violin maps, shown in Figure 2 (a) and Supporting Information (SI) Figure

S1, illustrate the distribution of V2DB materials ML-predicted G0W0 band gap (E
ML(GW)
g )

values for different prototypes.

For overall photocatalytic water splitting, the band gap of photocatalysts should exceed

the water splitting free energy of 1.23 eV, and at the same time be smaller than 3 eV to
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Figure 1: The workflow for scrutinizing V2DB as a possible source of 2D semicon-
ductor photocatalysts for solar water splitting. The blue part contains the first screen-
ing layer (based on ML-predicted G0W0 properties, from Candidates-316,505 to Candidates-
13,338 ) and the second screening layer (further manual selection, to Candidates-81 ). The
orange part refers to computational screening, including the third layer (based on DFT-
PBE level calculations, to Candidates-25 ) and the fourth layer (dynamical stability check,
to Candidates-11 ). The yellow part represents the high-level (HSE06 and G0W0) electronic
band structure calculations of the best 11 2D semiconductor candidates for solar water split-
ting.

efficiently harvest sunlight. Therefore, 1.23 ≤ E
ML(GW)
g ≤ 3 eV is set as the first selection

criterion in the current study, which is shown in Figure 2 (a) and Figure S1 as dashed red

lines. In addition to band gap, photocatalysts for solar water splitting should also have

appropriate band edges to straddle the water redox potentials. Specifically, the valence band

maximum (VBM) should be lower than the oxidation potential of O2/H2O (−5.67 eV vs

vacuum at pH=0), while the conduction band minimum (CBM) should be higher than the

reduction potential of H+/H2 (−4.44 eV vs vacuum at pH=0), and these constitute our

second and third criteria, respectively. The distribution of ML-predicted G0W0 band edges

of all V2DB materials is shown in Figure 2 (b) with grey dots, as well as in Figures S2 and

S3 split up according to the different 2D material prototypes. The black lines in these figures

show the applied cutoffs for the band edges, while the diagonal lines denote the cutoffs for the
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Figure 2: Screening based on ML-predicted properties. (a) The violin maps showing
the distributions of ML-predicted band gap values for 2D materials from the seven prototypes
identified in V2DB. For each prototype, the light-color shaded parts refer to all available
candidates in V2DB, while the dark-color shaded parts refer to candidates with small values
of ML-predicted band gap uncertainty (E

unc(GW)
g < 0.326 eV). The red-dashed lines denote

the ML-predicted band gap selection criterion, 1.23 ≤ E
ML(GW)
g ≤ 3 eV, applied in the

current study. (b) The distribution of ML-predicted band edges in V2DB. The horizontal

and vertical axes represent the VBM (E
ML(GW)
VBM ) and CBM (E

ML(GW)
CBM ) values, both relative to

the vacuum level, respectively. The horizontal black line at −4.44 eV and the vertical black
line at −5.67 eV represent the reduction potential of H+/H2 and the oxidation potential of
O2/H2O at pH=0, respectively. Additionally, two diagonal white lines indicate band gaps of
1.23 and 3 eV. The grey dots represent all 2D materials from V2DB (Candidates-316,505 ).
The light-colored dots represent candidates from seven selected prototypes, whereas the dark-
colored dots in the triangle represent structures after the first-stage screening (Candidates-
81 ). (c) The rose map and structural view of the seven prototypes. The light-colored regions
of the rose map depict all structures belonging to the selected prototypes in V2DB, whereas
the dark-colored areas and numbers correspond to Candidates-81.
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band gap screening. Clearly, 2D materials located inside the triangle marked by these lines

are ideal photocatalysts, which meet both the band gap and the band edge requirements.

It’s important to note that the ML-predicted materials within V2DB are not evenly

distributed across its chemical space. Consequently, predictions for different material types

exhibit varying levels of uncertainty.23,24 While the V2DB study outlines error metrics for

the ML models in general, it does not provide uncertainties for property predictions on

an individual material basis. Therefore, in the present work, we further developed a meta-

model to predict the uncertainty associated with previously predicted G0W0 band gap values,

allowing us to evaluate the reliability of each individual prediction. The meta-model is

based on a consensus of three different algorithms, namely Artificial Neural Network (ANN),

Random Forest (RF), and eXtreme Gradient Boosting (XGB). Further technical information

is given in the Methods section and Table S1. Using the trained meta-model, we predict

the G0W0 band gap uncertainty (E
unc(GW)
g ) for all 2D materials in V2DB. To determine the

materials with accurately predicted E
ML(GW)
g values, E

unc(GW)
g < 0.326 eV is used as the

fourth filter criterion here. The darker colored parts, shown in Figure 2 (a) and Figure S1,

denote the ML-predicted G0W0 band gap distribution of V2DB materials that satisfy the

fourth criterion. After these four criteria are executed, the total number of 2D materials is

reduced from 316, 505 to 13, 338 (Candidates-13,338 ).

In the second layer of the funnel, we impose two screening steps, including prototype

selection and structure filtering, to effectively narrow down the candidate space. Anticipating

difficulties in experimental synthesis of 2D materials with a complex structure, here, the

maximum number of atoms in a unit-cell is limited to three, in order to focus on relatively

simple structures. Consequently, all prototypes with up to three atoms are preserved, which

are BN, BiTeI, CdI2, GeS2, GeSe, MoS2, and MoSSe. The structures of these selected

prototypes are shown in Figure 2 (c). Additionally, the scatter plots for the ML-predicted

G0W0 band edge values of the V2DB materials from these prototypes are shown in Figure 2

(b) using light colored dots. Considering that all atoms in the structures of these seven
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prototypes have more than one covalent bond with neighboring atoms, the existence of H

atoms, with only one electron available for bonding, is not suited for the formation of stable

2D-bonded networks. Therefore, all structures that contain H atoms are also excluded in the

current study. Subsequently, we remove any duplicate structures in the candidate list and

the materials that are present in the ML training dataset. Additionally, 2D materials that

have already been reported in literature are also excluded, as we aim here to find novel 2D

photocatalysts. Table S2 shows examples of 2D structures that have been excluded during

the structure filtering step.

As a result of the filtering with the aforementioned criteria, the first stage screening

ended up with 81 potential 2D photocatalysts for solar water splitting (Candidates-81 ),

which successfully proceeded to the computational screening stage. The assembled number

of candidates in Candidates-81 from each prototype are shown in a rose map of Figure 2

(c). The ML-predicted G0W0 band edge distribution of these 81 candidates is illustrated in

Figure 2 (b) in the form of dark colored dots. Besides the colored dots, there are a large

number of grey dots located within the triangle shown in Figure 2 (b), which are as well

candidate 2D materials for photocatalytic water splitting and awaiting to be explored in

future studies. They all satisfy the band gap and band edge criteria applied in here but

belong to the fifteen other prototypes in V2DB with more complex structure which are not

considered in the current study.

The physics-based computational screening stage starts with structure relaxation of the

materials in Candidates-81. Since in V2DB virtual 2D materials are generated without any

geometrical optimization, it is essential to perform full structural optimization to find the

most energy-favorable state of each candidate. The structure optimizations are carried out

in multiple steps with increasing precision from low to high until the imposed convergence

standards are reached for the total energy and forces exerting on each atom. The details of

computational settings are provided in the Methods section. After the automated structural

optimization, we manually check each structure to ensure they remain in reasonable 2D
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Figure 3: Computational screening and the final selection of 2D materials for
water photocatalysis. (a) The top and side views of the TiFCl monolayer structure. (b)
The phonon dispersion spectra of TiFCl. (c) The changes in the total free energy of TiFCl
during an 8 ps AIMD simulation at 300 K, while the inset shows the top and side views
of the equilibrium structure. (d) The element-projected fat band structure of TiFCl with
respect to vacuum level, as calculated using the HSE06 functional. The color bar indicates
the donation proportion of Ti, and F plus Cl elements. Grey lines depict G0W0 band
structure relative to the vacuum level according to the HSE06 band gap center energy, EHSE

BGC

(indicated by the horizontal black dashed line). (e) The band alignments of Candidates-11
relative to the vacuum level. The colored rectangular columns represent the HSE06 band
edges, with different colors indicating the corresponding prototype. The G0W0 band edge
positions are shown by the outer horizontal grey lines. The red dashed lines represent the
reduction potential of H+/H2 and the oxidation potential of O2/H2O at pH=0.
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geometries. The majority of the candidates keep a structure similar to their corresponding

prototypes, although their lattice parameters and atomic positions undergo changes during

structural optimization due to elemental differences in chemical compositions. For example,

TiFCl monolayer preserves an H-phase sandwich configuration consistent with its prototype

of MoS2 as shown in Figure 3 (a). After determining the most energy-favorable geometry

of the materials in Candidates-81, the electronic band gaps at PBE level, both with and

without spin-orbit-coupling (SOC) effects, are calculated to identify semiconductors. Due to

the well-known underestimation of GGA-PBE functional, we don’t put a lower bound on the

band gap, but keep all candidates with a non-zero band gap. As a result, 25 semiconductors

(Candidates-25 ) are identified after the third screening layer (Figure 1). The corresponding

PBE-based electronic density of states (DOS), as calculated with the spin-polarization and

SOC, are shown in Figures S4 and S5, respectively. In addition, the numerical values for the

calculated band gaps are included in Table S3.

It is necessary to assess the dynamical stability of candidate 2D materials in Candidates-

25. We start with calculating the phonon dispersion curves in the full Brillouin zone (BZ) of

Candidates-25, where a dynamically stable structure should have no imaginary frequencies.

As an example, Figure 3 (b) shows the phonon dispersions of the TiFCl monolayer, where

all dispersion curves of the six optical and three acoustic modes have positive frequencies

only, demonstrating that TiFCl monolayer in its optimized structure is dynamically stable.

However, one needs to stress that in first-principles phonon calculations of 2D materials, the

flexural phonon branch, pertaining to out-of-plane motions, is sensitive to the computational

parameters, and the existence of small imaginary values near the Γ point is a common

issue.25,26 The inaccuracy in properly describing such long wave length out-of-plane motions

is not relevant for the quantities discussed in this paper, however. Furthermore, 2D structures

with small imaginary frequencies near Γ point can be stabilized by extrinsic effects, such as

their interactions with substrates.27 Therefore, here we only exclude structures that have

large imaginary frequencies in the middle of the BZ, which high likely point to the structure
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being unstable.28 The phonon calculation results of the Candidates-25 are collected in Figure

S6, in which the phonon stable 2D structures are labeled with red frames. As can be observed

in this figure, stable structures either have no imaginary frequencies, or small imaginary

frequencies near Γ (≲ 0.2 THz, such as VClO or SnSSe), whereas unstable structures have

imaginary frequencies over a significant part of the Brillouin zone (≳ 1 THz, such as GaTeI

or ZnTe).

Subsequently, we further estimate the thermal stability of these structures by short AIMD

simulations at T = 300 K. For example, Figure 3 (c) shows the total energy during AIMD

simulation of the TiFCl monolayer, demonstrating that it merely oscillates around a fixed

value. Moreover, there are no bond breaking or structural distortions in the final configura-

tion. These results imply that the TiFCl monolayer should be relatively stable. Figure S7

includes a summary of all AIMD simulation results, revealing that two structures exhibiting

noticeable distortions and one structure transforming completely from H- to T -phase.

As a final test to assess structural stability, we calculate the elastic constants for the

remaining 11 structures, and the results are compiled in Table S4. By applying the criteria

for stability on the elastic constants, corresponding to their structural symmetry,29,30 the

mechanical stability of these structures is confirmed. As a result, 11 stable 2D semiconductors

are screened out as photocatalyst candidates (Candidates-11 ). The corresponding structure

configuration and lattice information of Candidates-11 are presented individually in Figures

S8-S18 (a, b).

In order to further investigate the electronic band structures of the selected potential

2D photocatalysts, the hybrid density functional HSE06 with SOC correction is employed.

The calculated HSE06 band gap (EHSE
g ) results of the Candidates-11 materials are shown in

Table 1. To visualize the contributions from each chemical element to the electronic states,

we also calculate the projected band structures of the Candidates-11, which are shown in

Figures S8-S18 (c). One might expect that semiconductor where the VBM and CBM have

different characters, i.e., have contributions from different atom layers are more susceptible
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Table 1: The V2DB-ID, material formula, prototype information, band character, total
magnetic moment (Mtotal; µB per formula unit), calculated spin-polarized PBE band gap
(EPBE−spin

g ), PBE band gap (EPBE
g ), HSE06 band gap (EHSE

g ), G0W0 band gap (EGW
g ), and

G0W0 band edges with respect to the vacuum level of the best 2D material candidates,
Candidates-11, for photocatalytic water splitting that have been identified in the current
study. All the band gap and band edge values are shown in units of eV.

V2DB-ID material prototype character Mtotal EPBE−spin
g EPBE

g EHSE
g EGW

g EGW
VBM EGW

CBM

129 VFCl BiTeI Indirect 3.0 1.00 0.97 4.04 4.24 −6.12 −1.88

145 VClO BiTeI Direct 2.0 0.34 0.33 2.44 3.37 −7.16 −3.79

246 MnClBr BiTeI Indirect 5.0 1.67 1.62 4.25 5.44 −7.93 −2.49

286 MnIBr BiTeI Indirect 5.0 1.24 1.06 3.13 3.95 −6.72 −2.77

1375 MnFF CdI2 Direct 5.0 2.37 2.36 4.85 6.92 −8.76 −1.84

1392 MnClI CdI2 Indirect 5.0 1.18 0.97 3.03 4.15 −6.57 −2.43

1628 SnSSe CdI2 Indirect 0.0 0.99 0.84 1.45 2.71 −7.33 −4.61

1684 MnClI GeS2 Indirect 5.0 1.41 1.33 3.38 5.12 −7.40 −2.28

1686 MnBrI GeS2 Indirect 5.0 0.74 0.64 3.59 4.95 −7.43 −2.48

1781 TiFCl MoS2 Direct 0.0 1.15 1.12 1.48 2.12 −5.82 −3.70

3126 WTeO MoSSe Indirect 0.0 0.70 0.53 0.75 1.41 −6.52 −5.11

to spatial separation of the photo-excited carriers, which is an important step in initiating

the photocatalytic reactions.31,32 For instance, as shown in Figure S14 (c), the CBM of SnSSe

has dominant contribution from the Sn atoms, while S and Se atoms contribute to most of the

VBM. This indicates that the transition of electrons from VBM to CBM is accompanied by

a spatial movement of the charges from the anions to the cations. Moreover, the character

of band gap might affect different aspects of the photocatalytic efficiency as well. Direct

band gap materials usually show a good solar energy absorption, while indirect band gap

materials can have good performance in charge-carrier separation.33,34

The many-body G0W0 approach
35 with SOC correction based on the PBE wave-function

is applied to calculate the G0W0 band gap (EGW
g ) of Candidates-11, and the corresponding

results are listed in Table 1. Compared to the HSE06 band gap values, G0W0 generally

increase the band gaps of the candidate materials. It should be noted, however, that the

G0W0 band gaps calculated here are for free-standing 2D layers. These calculated values

12



are likely to form an upper bound, as in an experimental situation the 2D layers will be

adsorbed on the substrate, whose dielectric screening will reduce the band gap. In all cases

PBE was used to generate the starting point for the G0W0 calculations, with the exception

of VClO. In that particular case the PBE functional gives a qualitatively wrong description

of the character of the bands around the band gap. This error is corrected by the PBE+U

functional, see Figure S19, and we use this functional to generate the starting point for

the G0W0 calculation on VClO. The G0W0 band gaps of the complete set of Candidates-11

materials exceed the water splitting free energy of 1.23 eV. In addition, the calculated values

for the three 2D semiconductors, including SnSSe, TiFCl and WTeO, are smaller than 3 eV,

which suggests that these compounds can efficiently utilize the visible light spectrum. Some

candidates, such as MnFF and MnClBr, have relatively large band gap values at G0W0 level,

which indicates that they are not perfectly suitable for photocatalytic reactions. However, it

may still be possible that the photocatalytic performance of these large band gap materials

can be improved, for instance through the application of mechanical strain or an electric

field,3 or by embedding in heterostructures.36 It may also be possible to optimize such a

material for one of the two half reactions of water splitting (either oxygen evolution, or

hydrogen evolution), for instance by adjusting the pH values of the solution appropriately.33

To estimate the absolute values for the G0W0 band edges, we employ here the band

gap center (BGC) model,3,37 which has proven to be useful in previous studies.31,38,39 As an

example, Figure 3 (d) illustrates the G0W0 band structures of the TiFCl monolayer relative

to the vacuum level obtained based on the HSE06 BGC energy. Table 1 and Figure 3 (e)

give an overview of the calculated G0W0 band edge energy values for the Candidates-11. In

Figure 3 (e), one can assess the water splitting performance of each candidate by comparing

the VBM and CBM positions (grey lines) with the redox potentials of oxygen (O2/H2O) and

hydrogen evolution (H+/H2) reactions at pH=0 (red dashed lines), respectively. Accordingly,

the majority of Candidates-11 have G0W0 band edges that straddle the redox potentials of

water, which in principle make them promising candidates for overall photocatalytic water
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splitting. Nevertheless, SnSSe and WTeO still only meet the criterium for VBM position,

which indicates that they will be suitable only for the oxygen evolution reaction. Interest-

ingly, compared to HSE06, G0W0 moves the VBM of TiFCl to below the oxygen evolution

potential, implying that this material has inherent capability for overall solar water splitting.

In summary, we employ an ML-aided physics-based computational funnel approach for

the discovery of potential 2D solar water splitting photocatalysts from the V2DB database.

The initial screening stage utilized ML-predicted electronic properties, including band gap

and band edge positions, as well as a newly developed ML model to estimate the uncer-

tainties in ML-predicted band gap values. We further narrowed down the list of candidates

by selecting structures from prototypes with no more than three atoms per unit-cell, and

excluding materials that have already been reported in the literature. The second stage of

the funnel involves DFT calculations, beginning with structural optimization and band gap

calculations at the PBE level to identify suitable semiconductors for photocatalytic water

splitting. The stability of the remaining candidates is then checked by phonon dispersion and

AIMD calculations. Following this two-stage screening process, we identify 11 dynamically

stable 2D semiconductors as potential photocatalysts for solar water splitting.

We further study these candidates by performing high-level hybrid-DFT (HSE06) and

G0W0 calculations. As a result, all 11 candidates are found to have G0W0 gap values that

exceed the water splitting free energy of 1.23 eV, while three 2D semiconductors SnSSe, TiFCl

and WTeO have G0W0 gaps that are smaller than 3 eV, which implies a potential effective

use of visible sunlight for water photocatalysis. Furthermore, based on the HSE06 BGC

energy, the G0W0 band edge positions are estimated for the best candidates. Nine out of 11

2D materials are found to have band edges that straddle the water redox potentials, whereas

the remaining two materials are found to be suitable only for the oxygen evolution reaction.

We conclude that several newly identified 2D photocatalysts in this work hold promise for

future validation. Thus, this research could potentially inspire further exploration of novel

2D materials by effectively utilizing both physics-based calculations and ML models.
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Methods

Uncertainty Labeling Of The Band Gap Predictions

To label our dataset and train the models, we collected the ML-predicted PBE band gap

(E
ML(PBE)
g ) values from V2DB and the DFT calculated PBE band gap (EPBE

g ) values from

C2DB,14 a computational 2D materials database, which is the source of ML training data for

V2DB. Next, based on the absolute difference between these two values, we quantified the

prediction uncertainty of the ML-predicted PBE band gaps (E
unc(PBE)
g ). We also transformed

the band gap uncertainty from PBE to GW (E
unc(GW)
g ) using Equation (1) below.

Eunc(GW)
g = 1.63× Eunc(PBE)

g = 1.63× |EML(PBE)
g − EPBE

g | (1)

where 1.63 is the linear regression fitting slope between PBE and GW band gap from V2DB

work.22 The set screening criterion for band gap uncertainty at GW level E
unc(GW)
g < 0.326

eV (corresponding to E
unc(GW)
g < 0.200 eV). We used (E

unc(GW)
g ) values as our targets when

training our meta-models for uncertainty prediction.

Machine Learning Algorithms

We employed a feature vector and three different ML algorithms with the optimized

parameters as explained below. Our consensus ML model consists of a combination of these

individual ML models, with the final predictions being obtained by calculating the arithmetic

average of the predictions made by each of these models.

Feature Vector Configuration

To represent the materials in the latent space we constructed a feature vector by amal-

gamating three different vectors using the same methodology as described in the V2DB

study.22 The first one is the prototype vector, which is a one-hot vector containing the pro-

totype information of the materials. The second vector is the chemical composition vector,

which comprises details about the chemical elements present in the materials, along with

the composition of these elements. Lastly, the electronegativity vector contains float data
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values of electronegativity, calculated using the geometric mean of the electronegativity of

positively and negatively charged atoms in the compound, and has a length of 2.

Artificial Neural Network (ANN) Model Configuration

We used scikit-learn40 version 0.22.2.post1 to train the ANN models and performed

parameter optimization using grid search with the configurations given below. To optimize

the parameters, we employed 10-fold cross-validation. The parameters selected for the final

ANN model that demonstrated the best performance are shown below in bold, while the

remaining parameters were set to their default values.

• Activation function: (relu, tanh)

• Alpha: (0.025, 0.05, 0.1, 0.2)

• Max iteration: (100, 200, 400)

• Hidden Layers: [(100),(200),(400),(800),(100,10),(200,10),(400,10),(800,10),(100,20),

(200,20),(400,20),(800,20)]

Random Forest (RF) Model Configuration

We used scikit-learn40 library version 0.22.2.post1 to train the RF models. We used the

default values for the parameters of the given version except the number of estimators was

set to 1000.

Extreme Gradient Boosting (XGB) Model Configuration

We used xgboost41 library version 1.0.2 to train the XGB models. Using grid search,

we optimized the parameters of the XGB models with the configurations given below. To

optimize the given parameters, we used 10-fold cross-validation. The selected parameters

for the final XGB model that exhibited the best performance are indicated in bold below,

whereas the default values were used for the remaining parameters.

• Max depth: (4, 6, 8, 10)

• Learning rate: (0.2, 0.3, 0.4)

• Min child weight: (1, 2)
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• gamma: (0, 0.1, 0.2, 0.3, 0.4)

• Colsample bytree: (0.3, 0.5, 0.7)

Consensus Model Configuration

The consensus model comprises ANN, RF, and XGB models. Predictions are generated

by averaging the predictions from these three models. Each model is trained independently,

with parameters optimized as described earlier. Cross-validation results for both individual

models and the consensus model are provided in the SI.

DFT Calculations

All DFT calculations were performed with the Vienna ab initio Simulation Package

(VASP),42,43 and the results were handled by the VASPKIT package.29 We employed the

frozen-core projector augmented wave (PAW) method and Perdew-Burke-Ernzerhof (PBE)

functional within the generalized gradient approximation (GGA).44,45 To avoid interactions

with the mirror image, a sufficiently large vacuum space of 15 Å was added perpendicular

to the surface in the c direction for each 2D structure. The electronic wavefunction was

expanded using a plane-wave basis with a kinetic energy cutoff of 500 eV. All the geometric

structures were visualized using the VESTA package.46

In the structure optimization calculations, the convergence criteria were set to be 10−5

eV in energy between the consecutive relaxation steps and 0.01 eV/Å in force remaining

on atoms. The 2D BZ was sampled using a 12×12×1 Γ-centered k -point mesh. For the

density of state (DOS) calculations, the effects of magnetism and spin-orbital coupling (SOC)

corrections were taken into account, and denser k -point grids of 21×21×1 were used.

The phonon dispersion curves were calculated using density functional perturbation the-

ory (DFPT) as implemented in the PHONOPY code.47 Supercells of 5×5×1 unit cells were

employed for this purpose. The AIMD simulations were performed employing the canonical

ensemble (NV T ) at 300 K for 8 ps, at a time step of 1 fs, and using supercells of 4×4×1.

The temperature was controlled using the Nosé-Hoover method. Additionally, for magnetic

materials, the phonon and AIMD calculations involved the spin-polarization effects. The
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stress-strain method implemented in VASPKIT is employed to investigate the elastic con-

stants.

HSE06 Calculations

To achieve accurate band structure calculations, the Heyd–Scuseria–Ernzerhof (HSE06)

hybrid density functional was employed, which incorporates 25% exact Hartree−Fock (HF)

exchange.48 In these calculations, the effects of SOC were included, while the band edge posi-

tions relative to the vacuum level were accurately computed using the electrostatic potential

alignments.

G0W0 Calculations

The one-shot G0W0 calculations were performed, for which the quasi-particle energies

were obtained using DFT-PBE wave functions.35 For these calculations, 12×12×1 k -grids

were applied, which is consistent with several recent high-throughput studies.20,49,50 The

energy convergence and energy cutoff for the response function were set to 10−8 between

consecutive electronic steps and 100 eV, respectively. To ensure accurate results, 160 empty

bands were included and the correction effect of SOC was taken into account in each com-

putation. The maximally localized Wannier functions were fitted to the quasi-particle band

structures using the WANNIER90 package.51

According to the BGC model,3,37 the band edges at the G0W0 level are calculated as

follows

EGW
VBM = EHSE

BGC − 1

2
EGW

g (2)

EGW
CBM = EHSE

BGC +
1

2
EGW

g (3)

where EHSE
BGC is the band gap center energy calculated using the HSE06 hybrid functional,

and EGW
g is the band gap calculated using the G0W0 approximation.
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Table S1. Cross-validation results of the uncertainty prediction model. Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) 10-fold cross-validation results (eV) of the individual models and the consensus 

model. 

 

  

Model MAE RMSE 

ANN 0.114 0.199 

RF 0.104 0.199 

XGB 0.106 0.200 

Consensus 0.103 0.190 
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Figure S1. Violin maps of ML-predicted G0W0 band gap (𝐸g
ML(GW)

) distribution of the candidates from the V2DB 

prototypes which have not been included in the current study. For each prototype, the light color shaded part 

refers to all the available candidates in V2DB, while the dark color shaded part refers to the candidates that 

have ML-predicted G0W0 band gap uncertainty (𝐸g
unc(GW)

) values smaller than 0.326 eV. The red horizontal 

dashed lines denote the limits for the  band gap selection criteria that have been applied in the current study. 
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Figure S2. The distribution of ML-predicted G0W0 band edges of all 2D structures from the seven V2DB 

prototypes  that have been considered in the current study. The color bars show the 𝐸g
unc(GW)

 values, while the 

grey dots within the scatter plots denote the compounds with 𝐸g
unc(GW)

> 0.326 eV. 
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Figure S3. The distribution of ML-predicted G0W0 band edges of all 2D structures from the V2DB prototypes 

that have not been considered in the current study. The color bars show the 𝐸g
unc(GW)

 values, while the grey 

dots within the scatter plots denote the compounds with 𝐸g
unc(GW)

 > 0.326 eV.  
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[a]Repetitive structures in V2DB. 

[b]Exist in training dataset. 

[c]Reported in literature. 

 

Table S2. Examples of 2D structures, which have been excluded in the manual filtering step, and their 

corresponding electronic properties as obtained from the V2DB database. 

 

Discussion: Here, for example, HfSCl monolayer with V2DB-IDs of 1940 and 3075 have different 2D prototype 

structures of MoS2 and MoSSe, respectively. However, since their actual 2D structures will share the same 

configurations in H-phase, we treat them as duplicates and keep one of them for further optimization and 

analysis in the current study. 

As we aim to find novel 2D photocatalysts here, the structures that have been included in the V2DB training 

dataset (marked with [b]) and the structures that have been reported in the literature (marked with [c]) are also 

excluded. 

  

V2DB-ID Material Prototype 𝑬𝐠
𝐌𝐋(𝐆𝐖)

 𝑬𝐕𝐁𝐌
𝐌𝐋(𝐆𝐖)

 𝑬𝐂𝐁𝐌
𝐌𝐋(𝐆𝐖)

 𝑬𝐠
𝐮𝐧𝐜(𝐆𝐖)

 

1402 MnII[b] CdI2 2.02 -5.85 -3.83 0.212 

1627 SnSS[b] CdI2 2.95 -7.28 -4.33 0.212 

1687 MnII[b] GeS2 2.50 -6.00 -3.50 0.196 

1940 HfSCl[a] MoS2 2.27 -5.97 -3.70 0.130 

3075 HfSCl[a] MoSSe 2.41 -5.97 -3.56 0.163 

3120 WSS[b][c] MoSSe 2.59 -6.27 -3.68 0.277 

3121 WSSe[b][c] MoSSe 2.80 -6.01 -3.21 0.277 

3228 GeTe[b][c] GeSe 2.95 -5.78 -2.82 0.147 
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Figure S4. The calculated spin-polarized DFT (PBE) electronic density of states (DOS) for the Candidates-25. 

The origin of the energy scale was set at the Fermi level and shown with horizontal dotted lines. 
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Figure S5. The calculated DFT (PBE) electronic density of states (DOS) also including the spin-orbital-

coupling (SOC) relativistic effects for the Candidates-25. The origin of the energy scale was set at the Fermi 

level and shown with horizontal dotted lines.  
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Table S3. A summary of the calculated DFT (PBE) results for the Candidates-25.  

  

V2DB-ID Material Prototype 
Magnetic 

moment (μB) 

PBE_spin (eV) PBE_soc (eV) 

𝑬𝐠
𝐭𝐨𝐭𝐚𝐥 𝑬𝐠

𝐮𝐩
 𝑬𝐠

𝐝𝐧 𝑬𝐠 

129 VFCl BiTeI 3.0 1.00  1.00  5.66  0.97  

145 VClO BiTeI 2.0 0.34  0.34  3.37  0.33  

166 VBrF BiTeI 3.0 0.78  0.78  4.62  0.77  

246 MnClBr BiTeI 5.0 1.67  3.40  3.05  1.62  

286 MnIBr BiTeI 5.0 1.24  2.86  2.12  1.06  

657 GaTeI BiTeI 0.0 0.42  0.42  0.42  0.17  

659 GaISe BiTeI 0.0 0.88  0.88  0.88  0.54  

1062 SbOI BiTeI 0.0 1.62  1.62  1.62  1.07  

1375 MnFF CdI2 5.0 2.37  2.37  6.23  2.36  

1379 MnFBr CdI2 5.0 1.76  2.17  3.00  1.68  

1381 MnFI CdI2 5.0 1.07  1.35  1.90  0.83  

1392 MnClI CdI2 5.0 1.18  2.72  2.03  0.97  

1628 SnSSe CdI2 0.0 0.99  0.99  0.99  0.84  

1684 MnClI GeS2 5.0 1.41  2.93  1.83  1.33  

1686 MnBrI GeS2 5.0 0.74  2.68  1.90  0.64  

3187 MnSe GeSe 5.0 0.07  0.94  2.20  0.02  

3221 ZnTe GeSe 0.0 1.22  1.22  1.22  1.16  

1784 TiFCl MoS2 0.0 1.15  1.15  1.15  1.12  

1986 AlSeI MoSSe 0.0 0.87  0.87  0.87  0.50  

2027 ScFSe MoSSe 0.0 1.05  1.05  1.05  0.98  

2076 TiNBr MoSSe 0.0 0.67  0.67  0.67  0.59  

2250 MnFBr MoSSe 5.0 1.34  1.74  2.10  1.22  

2301 MnIF MoSSe 5.0 0.48  0.75  1.19  0.24  

2303 MnICl MoSSe 5.0 0.82  2.11  1.51  0.58  

3126 WTeO MoSSe 0.0 0.70  0.70  0.70  0.53  
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Figure S6. The calculated phonon dispersion spectra for the Candidates-25. The phonon-stable 2D 

semiconductors are labeled with a red frame.  
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Figure S7. The energy profiles for the phonon-stable 2D structures from AIMD simulations at 300 K. The 

thermal-dynamically stable 2D semiconductors, Candidates-11, are labeled with a red frame. 
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Table S4. A summary of the calculated elastic constants for the Candidates-11. The mechanical stability criteria of each structure are based on its crystal system[1,2]. 

 

 

V2DB-ID Material Prototype Space group C11 (N m-1) C12 (N m-1) C22 (N m-1) C66 (N m-1) Mechanical stability criteria[1,2] Stable? 

129 VFCl BiTeI P3m1 47.27 12.81 (=C11) 17.23 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

145 VClO BiTeI P3m1 113.29 38.36 (=C11) 37.47 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

246 MnClBr BiTeI P3m1 35.58 13.31 (=C11) 11.13 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

286 MnIBr BiTeI P3m1 31.39 10.49 (=C11) 10.45 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

1375 MnFF CdI2 P-3m1 46.90 15.23 (=C11) 15.83 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

1392 MnClI CdI2 P3m1 33.55 11.95 (=C11) 10.80 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

1628 SnSSe CdI2 P3m1 64.22 15.92 (=C11) 24.15 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

1684 MnClI GeS2 Pmm2 24.31 0.24 14.83 0.89 C11>0 & C66>0 & C11*C22>C12*C12 Yes 

1686 MnBrI GeS2 Pmm2 20.00 0.53 15.30 0.89 C11>0 & C66>0 & C11*C22>C12*C12 Yes 

1781 TiFCl MoS2 P3m1 100.15 19.81 (=C11) 40.17 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 

3126 WTeO MoSSe P3m1 158.80 25.30 (=C11) 61.75 (=(C11-C12)/2) C11>0 & C11>|C12| Yes 
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VFCl 

 

 

 

Figure S8. (a, b) The top and side views of VFCl monolayer; (c) HSE06-calculated fat band structure of each 

element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.   
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Figure S9. (a, b) The top and side views of VClO monolayer; (c) HSE06-calculated fat band structure of each 

element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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MnClBr 

 

 

 

Figure S10. (a, b) The top and side views of MnClBr monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S11. (a, b) The top and side views of MnIBr monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S12. (a, b) The top and side views of MnFF monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S13. (a, b) The top and side views of MnClI monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S14. (a, b) The top and side views of SnSSe monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S15. (a, b) The top and side views of MnClI monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S16. (a, b) The top and side views of MnBrI monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  



S22 

 

 

TiFCl 

 

 

 

Figure S17. (a, b) The top and side views of TiFCl monolayer; (c) HSE06-calculated fat band structure of each 

element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S18. (a, b) The top and side views of WTeO monolayer; (c) HSE06-calculated fat band structure of 

each element within the 2D material; (d) G0W0-calculated band structure. In (c) and (d), the origin of the energy 

scale was set at the Fermi level and shown with horizontal dashed lines.  
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Figure S19. The band structures of VClO as calculated with (a) PBE; (b) PBE+U, (c) G0W0; (d) G0W0+U 

methods. For all calculations the spin-orbit-coupling (SOC) effects have been included. The G0W0 calculation 

is carried out using the converged PBE wavefunction. 

Discussion: For a comparison of Hubbard correction effects on the VClO compound, we performed PBE and 

G0W0 band structure calculations both with and without +U parameter, where for V the U = 3 value was 

employed.  

Although, the PBE and G0W0 band structures without the +U effect, as shown in (a) and (c), are consistent, 

they are qualitatively different from the HSE06 band structure shown in Figure S9 (c).  

Applying the Hubbard correction in PBE and G0W0 calculations for VClO has changed the band structure 

configurations as shown in (b) and (d), respectively. Importantly, the band configuration of the top two valence 

bands has become consistent with HSE06 band structure. Therefore, we conclude that for the VClO monolayer, 

inclusion of +U effect is necessary when calculating its G0W0 band structure based on the PBE wave-function.  
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