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Conjugated sulfonamides (CSAs) stand out for their propitious electroactivity and notable stability in ambient conditions, making
them suitable candidates for high-potential cathode materials in lithium-ion batteries (LIBs). This study employs a combination of
machine learning, semi-empirical quantum mechanics, and density functional theory methods to evaluate a large library of 11,432 CSA
molecules, focusing on material properties crucial for application in batteries, such as synthetic complexity, redox potential, gravimetric
charge capacity, and energy density. After applying the thresholds for the synthetic complexity score at 2.62 and the redox potential at
3.25 V vs Li/Li+, we identify 50 CSA molecules that are easy-to-synthesize and suitable for the positive electrode in LIBs. By ranking
on the basis of redox potential, 13 CSA molecules having potentials greater than 3.50 V vs Li/Li+ are identified. Through further
investigations using molecular dynamics simulations on these reactant molecules and their lithiated products, we single out a molecule
for synthesis and electrochemical evaluation. This molecule, lithium (2,5-dicyano-1,4-phenylene)bis((methylsulfonyl)amide)(Li2-DCN-
PDSA), demonstrates a redox potential surpassing those previously reported within the class of CSA molecules. Moreover, the
study explores the quantitative structure-property relations of CSAs, yielding insights for the development of CSA-based LIB cathode
materials, informed by the comprehensive data assembled.

1 Introduction

Organic compounds with various redox functionalities have been increasingly developed and researched as
electrode materials in rechargeable lithium-ion batteries (LIBs), owing to their distinct merits of natural
abundance, environmental benignancy, structural diversity, and molecular-level controllability [1, 2, 3, 4].
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According to the characteristics of uptaking and donating electrons in the neutral state of redox-active moi-
eties, organic electroactive materials can be classified into n-type, p-type, and bipolar-type systems [5]. N -
type organic species, when compared to their p-type counterparts, often offer less redox-inactive weight [6].
Furthermore, the lithiated n-type materials require lower amounts of organic electrolytes and Li salts, thus
meeting the practical requirements for battery cathodes that need to be paired with Li-free anodes [7].
Moreover, n-type materials encompass a wide range of redox-active moieties, such as S-S, C=O, C=N,
C=C, N=N, C≡N, and C≡C, allowing for the diverse design of cathode materials [6, 8].

To date, apart from the widely investigated organosulfur [9] and carbonyl-based compounds [10], new
classes of organic materials, including imines [11], azo compounds [12], conjugated sulfonamides [13],
oximates [14], triflimides [15], and cyanamides [15] have been successively applied as the electrode materials.
These findings have enriched the library of organic electrode materials, and have also led to major advances
in the electrochemical performance of organic materials not only for LIBs, but also for Na-ion and K-ion
storage. Meanwhile, these studies also demonstrate the challenges in designing high-potential n-type
organic cathodes, which are necessary for achieving high-energy-density LIBs. Among the n-type organic
compounds, the recently disclosed conjugated sulfonamides (CSAs) [13] have achieved high redox potentials
that can outcompete the carbonyl-based compounds [16] (2 – 3 V vs Li/Li+). The CSA derivatives also
showed favorable cathode performance, such as excellent cycling stability, and good power density for both
LIBs and other alkali (Na, K)-ion batteries [13, 17]. Some lithiated CSA phases have been also found with
intrinsic oxidation and hydrolysis resistance under ambient atmosphere, enabling their direct handling and
use as cathode materials in LIBs. Hence, they bring the development of organic cathode materials one step
closer towards practical commercial use. This new class of organic materials, with their redox chemistry
regulated by C=N-SO2CH3 molecular subunits, holds great promise as high-potential battery cathodes.

The reported CSA chemistries have been mainly studied experimentally, and the few compounds covered
in previous studies[13, 17, 18] are based on intuition or chemical design. To the best of our knowledge,
computational studies on the design of CSA cathode materials have not been reported yet. Thus, a vast
chemical space awaits exploration to unearth completely new CSA cathode candidates for LIBs that could
possess energy-related properties superior to the experimentally validated CSAs. Multi-scale computational
simulations have been extensively applied to provide insights into the physical and chemical mechanisms
of electrode materials across various battery applications [19, 20, 21, 22]. With the rapid advancement of
artificial intelligence (AI) technologies and their emerging applications in material science, machine learning
(ML) techniques are increasingly being integrated with these methods for material property prediction
and inverse design[23, 24, 25, 26]. This integration has accelerated the discovery of battery materials.
Additionally, incorporating combinatorial computational techniques into high-throughput computational
screening (HTCS) has proven to be an effective strategy for navigating large chemical spaces and identifying
potential candidates for functional battery materials [27, 28].

Here, we present a material discovery workflow that integrates multiple computational techniques,
including an ML model, semi-empirical quantum chemistry and DFT methods, molecular dynamic sim-
ulations, and automated searches of chemical vendors, culminating in the synthesis of a top candidate
compound. This approach has been applied to explore a sub-chemical space of CSAs, effectively screening
for high-redox candidate molecules. First, a virtual library of 11,432 CSA molecules is created by exhaus-
tively enumerating functionalized derivatives on specially-chosen CSA backbones with chemical R-groups.
Then, we determine the most efficient and accurate approach for performing electronic structure simula-
tions across the entire chemical molecular library, and apply it to predict the redox potential values of
all the CSAs. Next, we use the simplified molecular-input line-entry system (SMILES) representations
of CSAs in a machine-learning (ML) model to predict the synthetic complexity score (SCScore) of the
molecules. In addition, we calculate important energy-related properties of the new compounds, such
as the gravimetric specific capacity (Q) and gravimetric energy density (W ). Subsequently, the SCScore
and predicted redox potential are employed to down-select the easy-to-synthesize and high-potential CSA
molecules. Moreover, molecular dynamics (MD) simulations are performed for a group of CSA molecules
with a predicted redox potential greater than 3.50 V vs Li/Li+ to investigate their thermodynamic stability,
and a new molecule is selected from this group for experimental validation. Lastly, the molecular design
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principles are elucidated to guide the future engineering of CSA molecules for LIBs.

2 Results and Discussion

The virtual library of CSA molecules is constructed through the fusion of chemical building blocks within
predefined design principles, followed by a systematic enumeration of functional derivatives using chemi-
cally functional R-groups. Three chemical building blocks, namely para-CSA (redox-active groups at the
para position), ortho-CSA (redox-active groups at the ortho position), and benzene, are used to gener-
ate the core CSA structures. The use of para-CSA and ortho-CSA building blocks potentially facilitates
2Li++2e− reactions for the generated molecules during the (de)lithiation process (Supporting Information
Figure S1(a)). In this molecular fusion process, we apply boundary conditions for the total number of
rings and redox-active groups allowed on molecules. For instance, the upper limit for the number of six-
membered rings in the core CSA structures is three. Besides keeping the size of chemical library feasible
for computational screening, this limitation is based on the observation that the single-molecule model is
prone to have larger errors when predicting the properties of cathode materials that are formed by multiple
six-membered rings, which is essentially a result of the increased intermolecular π-stacking interactions [29].
Additionally, each CSA core is designed to include two redox-active groups, aiming to be consistent with
the molecules that have been researched in experimental works [13] on CSAs. In this context, the chemical
building blocks para-CSA and ortho-CSA are exclusively combined with benzene, resulting in 14 unique
core CSA structures. These structures consist of 2 one-ring, 3 two-ring, and 9 three-ring molecules, which
are shown in Figure 1a.

Next, a comprehensive R-group enumeration is performed to systematically generate functionalized CSA
derivatives. In this process, the aromatic H atoms of the core CSA structures are substituted with various
specific chemical R-groups. Six different chemical R-groups are considered for this purpose, including –CN,
–F, –Cl, –CH3, –OCH3, and –NH2, as shown in Figure 1a. These groups, which either withdraw or donate
electrons (highlighted in orange and blue in Figure 1a), are integrated into the core molecular structures
to broaden their range of electrochemical properties. The complete enumeration process, as shown in
Figure 1b, allows for substitutions from none to the maximum number of aromatic hydrogen atoms found
in the core CSA structures, details of which are provided in Supporting Information Table S1. Using the
Custom R-Group Enumeration package within SMSS, a virtual chemical library of 11,432 CSA molecules
is created for computational screening. Further information on the generated CSA molecules and the
number of functionalized derivatives obtained by using each unique R-group are provided in Supporting
Information Tables S1 and S2.

The commercial vendor information for the enumerated CSA molecules is automatically retrieved
from ChemSpace [30] and Molport [31] platforms using the ChemPrice [32] software tool and the ZINC
database [33] via an in-house developed tool, respectively. Both tools utilize SMILES strings of CSA
molecules as inputs and collect the available vendor information from the molecular databases. A compre-
hensive search of our molecular library across the ChemSpace, Molport, and ZINC databases revealed that
none of the compounds were listed for available to purchase. As a result, it was not possible to directly
acquire any new CSA compounds for experimental evaluation. This finding emphasizes the uniqueness
of CSA molecules and underscores the vital role of computational research in investigating their char-
acteristics. Given that no commercial vendors offer any compounds from our library, we assessed the
synthesizability of these virtual molecules using an ML model previously applied to quinone-based battery
materials [27] to quantify their synthesis complexity.

To determine a workable and yet accurate method for performing large-scale electronic structure simula-
tions on our virtual molecular library, we evaluate the performance of an adapted chemical descriptor. This
descriptor is calculated using different approaches, including density functional theory (DFT), and a hybrid
approach of semi-empirical quantum mechanics (SEQM) and DFT, aimed at predicting the experimen-
tally observed redox potentials. Selecting the lowest unoccupied molecular orbital (LUMO) energy of CSA
molecules as the chemical descriptor, we use the coefficient of determination (R2) and root-mean-square
error (RMSE) to gauge prediction performance (Supporting Information Figures S1 (b) and (c)). The
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Figure 1: (a) Two-dimensional (2D) structural representations of the 14 core molecules, alongside the selected chemical R-
groups. In the color bar, the orange and blue represent the electron-withdrawing and electron-donating R-groups, respectively.
(b) R-group enumeration process for para conjugated sulfonamide.
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LUMO energy of reactant CSA molecules, with R2 > 0.93 and RMSE < 0.10 V for all the computational
methods tested, is found to be a sufficiently good descriptor for predicting the redox potentials of CSA
cathode materials via HTCS. The hybrid approach scheme involving PBE single-point-energy calculations
with solvation effects, applied on PM7 optimized geometries (R2 = 0.96, RMSE = 0.057 V), is chosen for
predicting the redox potentials of 11,432 CSA molecules. This approach offers comparable accuracy to the
full PBE approach (R2 = 0.97, RMSE = 0.047 V), but at a computational cost approximately 13 times
lower than the purely PBE approach. Further details on redox potential predictions are provided in the
Supporting Information.

The relationships between the ML-predicted SCScore values and the calculated Eo
PM7/PBE and Q for

all CSA molecules within the virtual library are depicted using scatter plots as shown in Figures 2(a)
and 2(b), respectively. Orange plus signs on these plots highlight the seven experimental CSAs, with their
predicted values given in Supporting Information Table S3. The virtual molecular library has a broad
distribution across each predicted property, as shown in Figures 2(a) and 2(b), allowing for the identification
of CSA candidates with desirable features for cathode materials, such as high redox potential, low SCScore,
and sizable gravimetric charge capacity. The SCScore values for the experimentally studied CSAs vary
between 1.91 and 2.62, placing them in the lower regions of Figures 2(a) and 2(b). This highlights the
significance of SCScores as a metric as well as the experimental CSA molecules’ structural simplicity,
usually characterized by a single six-membered ring and no more than two R-groups, in addition to their
redox-active components. These molecules also achieve remarkably high theoretical Q values. Given the
unavailability of CSA molecules for direct purchase in vendor databases, the SCScores of the experimentally
studied CSAs serve as a threshold criterion in the first tier of HTCS. Consequently, CSA molecules with
SCScores above this limit are not considered for further analysis. With an emphasis on experimental
feasibility and synthesis simplicity, the highest SCScore from the experimental set, 2.62, is used as the
threshold criterion, marked by a horizontal dotted line in Figures 2(a) and 2(b). As a result, a narrowed
group of 231 CSA molecules is left for further study.

Following the virtual screening based on the SCScore, the selection process continues with a further
refined analysis within the virtual library. As shown in Figure 2(a), the range of redox potentials among
the 231 shortlisted CSA molecules spans from 1.85 V to 4.52 V vs Li/Li+. Previously, the experimentally
studied CSA molecules have demonstrated redox potentials within the range of 2.38 V to 3.25 V vs Li/Li+.
Among the 231 CSAs, 198 molecules have redox potentials above 2.38 V, and among these, 50 exceed the
3.25 V threshold. Given the need for high redox potentials in n-type cathodes for LIBs, a benchmark redox
potential of 3.25 V is set as a minimum cutoff, marked by a vertical dotted line in Figure 2(a). Applying
this criterion leads to the identification of 50 CSA molecules as promising candidates, featuring theoretical
Q values ranging from 84 mAh/g to 187 mAh/g.

Further studies involving molecular dynamics (MD) simulations are conducted to estimate the stability
of the candidate molecules under conditions of 300 K and 1 atm for a duration of 100 ns. This evaluation
focuses on observing the root mean square deviation (RMSD) across all atoms. Among the 50 screened high-
redox-potential CSA candidates, those with the highest potentials were prioritized for further investigation
using MD methods. After ranking the redox potentials, 13 molecules with values greater than 3.50 V vs
Li/Li+ are selected. These MD simulations are conducted to investigate both the reactant molecules and
their corresponding lithiated products. The results, including the distribution of Eo

PM7/PBE and average

RMSD values, are shown in Figure 2(c). Additional information, such as 2D structural representations,
and numerical values for Eo

PM7/PBE, theoretical Q, W, average RMSD, and the maximum root mean square

fluctuation (RMSF), is available in Table S4 of the Supporting Information. This analysis indicates that
both the pure and lithiated versions of the molecules exhibit considerable structural stability, with RMSD
values not exceeding 1.55 Å. For experimental assessment, we chose lithium, we chose lithium (2,5-dicyano-
1,4-phenylene)bis((methylsulfonyl)amide) (Li2-DCN-PDSA) from the top list of 13 molecules due to its high
redox potential, low SCScore value, and a synthetic protocol similar to that in the previous study [13],
thereby enabling feasible experimental validation. The selected Li2-DCN-PDSA, marked by a purple dot
in Figure 2(c), shows promising stability over the 100-ns MD simulation, evidenced by an average RMSD
1.22 Å as shown in Figure 2(d).
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Figure 2: 2D scatter distribution of (a) SCScore versus Eo
PM7/PBE and (b) SCScore versus Q. The orange pluses represent the

experimentally tested CSAs. The dotted horizontal lines in both (a) and (b) represent the SCScore cutoff value of 2.62. The
dotted vertical line in (a) indicates the redox potential cutoff value, Eo

PM7/PBE = 3.25 V. (c) The distribution of the average
values of RMSD versus Eo

PM7/PBE for 13 CSA molecules and their associated lithiated molecules. The blue and purple circles
denote the reactant and product molecules, respectively. The purple dot represents the experimentally validated molecule.
(d) The 100-ns MD trajectory of the experimentally validated molecule.

The Li2-DCN-PDSA molecule is synthesized according to the reaction process outlined in Figure 3(a).
Four sulfonyl groups are firstly grafted onto 2,5-diaminoterephthalonitrile (H4-DCN-DAB) by reacting it
with methanesulfonyl chloride in pyridine. Then, a solution of tetrabutylammonium fluoride (TBAF)
in tetrahydrofuran (THF) is added to yield the protonated compound H2-DCN-PDSA. The Li2-DCN-
PDSA compound is prepared through a lithiation reaction by adding lithium methoxide in anhydrous
methanol. The synthesis details are available in the Supporting Information. The structure of the targeted
molecule is confirmed by the proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared
(FTIR) spectroscopy, as shown in Figures 3(b) and (c). In the FTIR spectrum (red) of Li2-DCN-PDSA,
shown in Figure 3(c), the peaks at 2937, 2814 cm−1, and 1263, 1114 cm−1 correspond to the vibrations
of the C–H bond and the S=O bond in the redox-active C=N-SO2CH3 node, respectively, which are in
good agreement with the previous study [13]. The peak at 2232 cm−1 is attributed to the C≡N bond
vibration, consistent with previously reported results [34]. Then, the cyclic voltammetry (CV) profile of
Li2-DCN-PDSA is carried out in 0.1 M LiTFSI in DMSO, shown in Figure 3(d), reveals two redox processes
centered at 0.15 V and -0.19 V vs Fc/Fc+ (equivalent to 3.58 V and 3.24 V vs Li/Li+, represented by
vertical dotted lines in Figure 3(d)), aligning closely with the predicted value of Eo

PM7/PBE = 3.58 V

obtained using the PM7/PBE method. The Li2-DCN-PDSA compound exhibits a superior redox potential
compared to previously reported values [13] within the class of CSAs. These findings demonstrate that
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Figure 3: (a) Synthetic route for Li2-DCN-PDSA compound. (b) 1H NMR and (c) FTIR spectra of H4-DCN-DAB (black),
H2-DCN-PDSA (blue), and Li2-DCN-PDSA (red) compounds. (d) Cyclic voltammetry of Li2-DCN-PDSA with the electrolyte
of 0.1 M LiTFSI in DMSO.

our computational strategy is both a promising and reliable method for screening high-redox CSA cathode
candidates for LIBs. Moreover, the designed material discovery workflow can be directly applicable to an
expanded chemical space of CSA materials, involving a broader variety of core structures and R-groups,
and integrating these in various ways in the enumeration process. Moreover, computational modeling
across various spatial and temporal scales [22] can be further integrated into this workflow for the study
of CSA materials, incorporating validated crystal and aggregated structure models in future studies. To
advance the application of CSA materials in LIB technologies, it is essential to complement computational
findings with extensive experimental exploration in future studies. This includes galvanostatic testing and
full electrochemical characterization of top CSA compounds, as well as synthesizing and testing additional
candidate molecules. CSAs and their lithiated molecules have shown excellent air stability and good
compatibility with commonly used organic electrolytes, such as lithium salts (LiTFSI and LiPF6) and
organic solvents (tetraglyme, PC, DOL/DME, and EC/DMC) [13, 35, 36]. Moreover, optimizing electrode
formulations and their associated organic electrolytes is also crucial for the practical use of CSA materials
in LIB applications.

Next, the relationships between the structural features of molecules —specifically, the types of chem-
ical functional groups, the count of aromatic rings, and the varieties of redox-active groups —and their
calculated properties like redox potential and SCScore are explored. These insights are useful for future
molecular engineering efforts, aiming to develop other unique CSA-derived compounds as candidate cath-
ode materials for LIBs. The effects of different chemical functional groups on the predicted Eo

PM7/PBE and

SCScores are shown in Figures 4(a) and 4(d), with a detailed examination of ring size effects provided in
Figure S2 of the Supporting Information. Figure 4(a) reveals how redox potentials progressively increase
with the electron-withdrawing capabilities of functional groups, ranked as –CN > –F >–Cl > –CH3 >
–OCH3 > –NH2. Notably, CSA molecules with –CN groups achieve significantly higher redox potentials
compared to those with other electron-withdrawing groups, such as –F and –Cl. Additionally, the analysis
presented in Figure S2 suggests that CSA molecules with a single aromatic ring attain a narrower range
of redox potentials relative to the molecules with two or three rings, especially for those functionalized
with –F and –Cl, hinting at the subtle impact of these groups on the redox potentials of single-ring CSA
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Figure 4: Violin plots show the distributions of predicted redox potential Eo
PM7/PBE (a, b, c) and SCScore (d, e, f) for

11,432 CSA candidates within the virtual library, categorized by the type of chemical functional group (a, d), the number
of aromatic rings (b, e), and type of redox-active group (c, f) found on the molecule. In each plot, the median values are
indicated by the white dots inside the black bars.

variants.
No clear relationship has been established between the SCScore and the type of chemical functional

group, as shown in Figure 4(d). Here, CSA molecules with different functional groups exhibit compara-
ble SCScore profiles. Nevertheless, molecules that incorporate the –Cl functional group generally show
marginally lower SCScores, a pattern that mirrors findings in organic quinone studies [27].

Regarding the effect of the number of aromatic rings, shown in Figures 4(b) and 4(e), CSA molecules
that contain aromatic rings demonstrate a wide range of predicted Eo

PM/PBE, owing to the increased oppor-
tunities for structural alterations through substitutions, which can adjust their redox properties. Molecules
having fewer aromatic rings are typically associated with higher redox potentials and lower SCScores, which
are both desirable traits for organic cathode materials. However, the challenge with smaller molecules lies
in their solubility in organic electrolytes, which can compromise capacity retention in cathode materials
within LIBs. Therefore, it’s essential to aim for a well-rounded balance among key properties such as Eo,
Q, SCScore, and solubility, in the design of potential cathode materials for LIBs.

Within the virtual library, the positioning of redox-active groups in CSA molecules is categorized into
either para ([P]) or ortho ([O]) configurations. As shown in Figure 4(c), ortho-CSA variants exhibit slightly
higher predicted Eo

PM7/PBE values in comparison to their para-CSA equivalents. Additionally, a significant
portion of para-CSA compounds are predicted to have Eo

PM7/PBE values below 3 V. The influence of redox-
active group placement on the SCScore is indistinct, similar to the observed impact of functional group
types, as shown in Figure 4(f). Furthermore, the SCScore profiles for both para-CSA and ortho-CSA
molecules appear alike. Further analysis comparing the effects of redox-active group positioning on both
the predicted Eo and SCScore, considering various ring configurations, is detailed in Figure S3 of the
Supporting Information. With the rise of generative AI in material discovery and design [37], accompanied
by the shift of materials research from ”Fitting-Generation” to ”Pretraining-Prompting-Generation”, it
becomes feasible to perform the inverse design of CSA materials using structure-activity relationship data
for future LIB technologies.
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3 Conclusions

In this work, we conduct a computational investigation of an extensive collection of 11,432 conjugated sul-
fonamide (CSA) compounds to assess their viability as potential cathode materials for lithium-ion batteries
(LIBs). Using a comprehensive computational approach that merges semi-empirical quantum mechanics
(SEQM-PM7) with density functional theory (DFT-PBE), we achieve the accuracy required for effective
high-throughput computational screening (HTCS). We evaluate four key properties of these molecules-
—redox potential, SCScore, gravimetric charge capacity, and gravimetric energy density—-to rank them
across the entire virtual library. Utilizing the SCScore and redox potential benchmarks established by
previously analyzed CSA molecules, we identify 231 CSAs with promising synthetic accessibility. Subse-
quent refinement spots 50 candidates with redox potentials surpassing 3.25 V vs Li/Li+. From this group,
a top-ranking subset of 13 molecules, each with a potential greater than >3.50 V vs Li/Li+, undergoes
molecular dynamics (MD) simulations, revealing average RMSD values of up to 1.55 Å. Among these,
one molecule is chosen for experimental validation, showing properties aligning well with computational
predictions. Lastly, an exploration of structure-property correlations provides insights aimed at steering
the future synthesis and optimization of CSA compounds.

4 Methods

4.1 Electronic Structure Calculations

In this study, Schrödinger Materials Science Suite (SMSS) [38] is used for all the calculations. The compu-
tational scheme for large-scale electronic structure calculations includes the force field (FF) conformational
search on all the generated molecules, structural optimizations (OPT) on these FF-minimized geometries
using SEQM methods and DFT-level single-point energy (SPE) calculations on optimized coordinates in
an implicit solvent phase. The standard Poisson–Boltzmann Formalism (PBF) [39] was applied as an
implicit solvation model, requiring the solvent’s dielectric constant, molecular weight, and density. These
physical parameters were set according to tetraethylene glycol dimethyl ether, the electrolyte used in ex-
periments on conjugated sulfonamides [13]. The FF conformational search, SEQM optimizations, and
DFT SPE calculations are performed using the MacroModel [40] module, MOPAC2016 [41] package, and
Jaguar [42] program, respectively, all as implemented in SMSS. The OPLS3e [43] FF, PM7 [44] method
and PBE functional are employed for finding the lowest-energy conformers, SEQM OPT simulations, and
DFT SPE calculations, respectively. Further information on the computational methodology is provided
in the Supporting Information.

4.2 Synthetic Complexity Prediction

To prioritize the compounds that can be produced in the lab within our custom-made molecular library,
we apply a ML model developed by Coley et al. [45]. This model evaluates the synthetic complexity
of a molecule by analyzing its association with the number of steps involved in its synthesis history.
Molecules deemed simpler to synthesize receive lower scores, while those requiring more complex synthesis
processes are assigned higher scores. The ML algorithm, which underpins the SCScore, has been refined
through training on a dataset comprising 22 million reactant-product pairs from Reaxys database [46],
which contains high-quality reaction data on 12 million reaction instances. Molecular representation in
a machine-readable format is essential for predicting molecular properties [47]. In this study, we used
the SMILES representation of molecules as the ML model for synthetic complexity predictions operates
with this format. Upon entering a molecule’s SMILES notation into the model, it generates an SCScore
on a scale from 1 to 5. This score is then utilized as a criterion for filtering a selection of organic CSA
compounds, distinguishing those with a higher likelihood of straightforward synthesis. An SCScore value
close to 1 indicates low complexity in the synthesis of a compound, whereas a value near 5 indicates high
complexity. In this study, we set an SCScore threshold of 2.6 and selected CSA compounds with SCScores
ranging from 1.0 to 2.6 for further screening. It is important to consider additional factors such as cost,
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4.3 Gravimetric Charge Capacity and Energy Density

productivity, recyclability, toxicity, and safety when synthesizing these compounds at scale to better assess
their practicality for large-scale use.

4.3 Gravimetric Charge Capacity and Energy Density

In addition to the redox potential, we calculate and utilize the theoretical gravimetric charge capacity (Q)
and energy density (W ) for CSA cathode materials, with the relevant equations provided in the Supporting
Information.

4.4 Molecular Dynamics Simulations

For all molecular dynamics (MD) simulations in this study, the Desmond package [48] within the SMSS
is utilized. Each MD system is set up within a cubic simulation box, measuring 50 Å along each edge.
The OPLS4 FF is utilized to model atomistic interactions. The simulations run for a duration of 100
nanoseconds, featuring a relaxation period of 1 picosecond, and trajectory frames are captured at intervals
of 100 picoseconds. The thermodynamic stability of the molecules is assessed by monitoring the root mean
square deviation (RMSD) of all atoms and the root mean square fluctuation (RMSF) of the heavier atoms,
excluding hydrogen. The average RMSD value is derived from an analysis of the 1000 frames collected
during the simulation. Further specifics on the simulation parameters can be found in a previous study [49].

4.5 Experimental Measurements

The BioLogic Science Instruments SP-300 is utilized for electrochemical measurements. A three-electrode
system with screen-printed platinum as the working and counter electrodes, and screen-printed silver as
the pseudo-reference electrode are employed. The supporting electrolyte is 0.1 M LiTFSI in DMSO. 5 mM
of Li2-DCN-PDSA are dissolved in the organic solution. The Cyclic Voltammetry (CV) is performed with
a scan rate of 100 mV/s. Following the completion of the test, ferrocene is introduced into the solution to
serve as an internal reference.

Supporting Information

Supporting Information is available from the Wiley Online Library.

Code & Data Availability

The computed properties of 11,432 CSA molecules have been compiled into a dataframe containing infor-
mation on SMILES representations, molecular weight, Q, ELUMO

PM7/PBE, W, SCScore values, and commercial
vendor page retrieved from the ZINC database whenever available. This dataframe is available as a self-
contained Supplementary File in CSV format.
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