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Abstract— In this paper, we show uniform semi-global
practical asymptotic stability of fast extremum seeking con-
trol (ESC) for single-input single-output Wiener systems.
While classic ESC requires a time-scale separation between
plant and dither, the fast ESC method circumvents this
time-scale separation by exploiting limited knowledge of
the frequency response of the linear part of the Wiener sys-
tem, thereby achieving faster convergence. The assump-
tions under which the fast ESC method works are relaxed
compared to existing work and explicit bounds on the
design parameters of the fast ESC scheme are provided. A
numerical case study illustrates the enhanced convergence
and the robustness of the fast ESC method.

Index Terms— Adaptive control, extremum seeking, Lya-
punov methods, stability of nonlinear systems.

I. INTRODUCTION

EXTREMUM seeking control (ESC) is an online, model-
free optimization method used to improve steady-state

behavior of dynamic systems. These systems have input
signals that can be tuned to maximize a measurable perfor-
mance output. ESC adaptively changes these input signals to
maximize the performance output without requiring extensive
system knowledge. Many applications and variants of ESC can
be found in the literature, see, e.g., [1]–[3] for overviews.

In classic ESC [4] a sinusoidal wave, called the dither
signal, is used to perturb the input of the system around a
nominal value. In case the system is a dynamic system, the
frequency of the dither signal must be chosen sufficiently low
such that the dynamic system with measurable performance
output can be approximated by a static input-output mapping
on the time-scale of the perturbation. By filtering the response
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of the performance output using low- and high-pass filters,
an estimate of the local derivative of the static input-output
performance mapping can be derived. The cutoff frequency of
these filters must be sufficiently low compared to the dither
frequency. As a result, two time-scale separations are required:
one between the system and the dither and one between the
dither and the derivative estimator. Subsequently, the gradient
ascent algorithm, which operates on the time-scale of the
derivative estimator, is used to recursively update the nominal
value of the input.

The two time-scale separations limit the rate of convergence
to the optimum. Therefore, methods to alleviate these time-
scale separations have been researched. In [5], the use of
moving average filters instead of low- and high-pass filters
in the derivative estimation was proposed to remove the
time-scale separation between the dither and the derivative
estimation. Similarly, the ESC scheme in [6] circumvents the
same time-scale separation by using second-order averaging.
In [7]–[10], so-called fast ESC schemes are proposed that
remove the time-scale separation between the system and
the dither. They achieve this by imposing a certain system
structure, e.g., a Wiener system, and leveraging limited system
knowledge that is assumed to be available.

Of particular interest in this paper is the fast ESC method
from [10]. This method assumes that the system is a single-
input single-output Wiener system and that a frequency-
domain approximation of the linear part of the Wiener system
is available. By fitting the frequency-domain approximation
to online measurements of the input and output, a local
derivative estimate of the underlying steady-state input-output
mapping is obtained without requiring a time-scale separation
between system and dither. The benefits presented by this
method are as follows. Firstly, the method utilizes moving
average filters, like in [5], thereby circumventing both time-
scale separations required by classic ESC. Secondly, due to the
prevalence of frequency-domain design tools in industry [11],
it is often the case that limited knowledge of the frequency
response of the system is available, see, e.g., [12]. Instead
of neglecting this information, the method in [10] leverages
this available knowledge to achieve faster convergence and,
in industrial use cases, higher throughput than classic ESC.
Thirdly, other fast ESC methods [7]–[9] have strict conditions,
such as knowing the exact relative degree of the LTI part of
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the system, which in practice can be difficult to determine,
e.g., due to the presence of time delay in feedback-controlled
systems. Similarly, gray-box ESC methods, see, e.g., [2] for
an overview, assume that the entire model, except for a finite
number of parameters, is known. In contrast, the method in
[10] only requires approximate knowledge, making the method
inherently more robust.

Current limitations of the fast ESC scheme in [10] are
that the formal stability analysis still relies on a time-scale
separation between system and dither and that a strict re-
quirement is placed on the assumed available knowledge of
the Wiener system. To address these limitations, the contri-
butions of this paper are as follows: we provide a proof of
uniform semi-global practical asymptotic stability (USGPAS)
of the fast ESC method that does not require a time-scale
separation assumption between the system and the dither
signal. This removal of the time-scale separation, in addition
to using functional differential equations over ordinary differ-
ential equations, causes conventional methods of establishing
stability for ESC methods, see, e.g., [2], [4], [13], to not be
applicable. Thus, a novel proof is needed. In addition, we also
provide clear upper bounds on the design parameters of the
fast ESC scheme that guarantee USGPAS. Furthermore, the
conditons on the frequency-domain approximation are relaxed
compared to [10], making the discussed method more widely
applicable. Finally, the method is demonstrated using an
illustrative example.

The remainder of this paper is structured as follows: Section
II will provide some notation and definitions. In Section III a
brief description of the system and the control problem will be
given. In Section IV the fast ESC scheme will be discussed.
USGPAS of the fast ESC scheme will be shown in Section
V. An application of the fast ESC scheme and a comparison
to classic ESC will be presented on a numerical example
in Section VI. Finally, concluding remarks will be given in
Section VII.

II. NOTATION & DEFINITIONS

Let R, R≥0, R>0 and C denote the sets of real, nonnegative
real, positive real and complex numbers, respectively. We
denote by |z|, ∠(z), Re{z} and Im{z} the absolute value,
principal argument, real part and imaginary part of z ∈ C,
respectively. Furthermore, ∥x∥ and ∥M∥ denote the Euclidean
norm of x ∈ Rn and the spectral norm of M ∈ Rn×n,
respectively. We adopt the standard definitions for K- and
KL-functions from [14, Definitions 4.2 and 4.3]. We say
f(x) = O(g(x)), where x ∈ R, if there exist positive constants
E and ϵ such that |f(x)| ≤ E|g(x)| if |x| < ϵ. We adopt the
definition of uniform semi-global practical asymptotic stability
(USGPAS) from [13, Definition 1].

III. SYSTEM DESCRIPTION

Consider the single-input single-output Wiener system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

z(t) = h(y(t)),

(1)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈ R
is the output of the linear system and z(t) ∈ R is the output
of the Wiener system, all at time t ∈ R≥0, and A, B, C and
D are real matrices of appropriate dimensions. The transfer
function of (1) is defined by

H(s) = C(sI −A)−1B +D,

in which s is the Laplace variable and I the identity matrix
of Rn×n. Finally, h : R −→ R is a static, nonlinear function
and at least three times differentiable. We make the following
assumptions on system (1).

Assumption 1: The matrix A is Hurwitz
The first assumption implies the existence of an asymptotically
stable equilibrium point x̄(ū) := −A−1Bū for any constant
input u(t) = ū ∈ R for all t ∈ R≥0. Hence, there exists an
asymptotically stable steady-state input-output mapping Q :
R −→ R given by Q(ū) := h(−CA−1Bū+Dū).

Assumption 2: The steady-state input-output mapping Q
possesses a unique maximum at u⋆ and

dQ
dū

(ū) = 0 if and only if ū = u⋆.

The second assumption implies that Q is unimodal, i.e.,

(ū− u⋆)
dQ
dū

(ū) < 0 ∀ū ̸= u⋆, (2)

which includes (but is not limited to) all strictly concave
functions. These assumptions are analogous to the standard
assumptions of extremum seeking control (ESC) in a non-
local stability context, see, e.g., [13, Assumptions 1-3]. The
control goal is to steer the input u(t) to a neighborhood of u⋆

such that x(t), y(t) and z(t) converge to a neighborhood of
x⋆ := x̄(u⋆), −CA−1Bu⋆ +Du⋆ and Q(u⋆), respectively.

IV. FAST ESC DESCRIPTION
We consider the dither-based version of the fast ESC scheme

in [10] with a single sine dither signal

u(t) = û(t) + d(t)

d(t) = a cos(ωt)

˙̂u(t) =

{
0, t < T

cξ(t), t ≥ T

ξ(t) = Ĥ(0) · argmin
θ∈R

∣∣∣Z(t)− θĤ(iω)N(t)
∣∣∣2

Z(t) =
1

T

∫ t

t−T

z(τ)e−iωτdτ

N(t) =
1

T

∫ t

t−T

d(τ)e−iωτdτ.

(3)

Here, û(t) ∈ R is the optimizer output, d(t) ∈ R is the
dither signal (with amplitude a ∈ R>0, frequency ω ∈ R>0

and period T := 2π/ω), all at time t ∈ R≥0. The signals
Z(t) ∈ C and N(t) ∈ C are the Fourier transforms of z and
d, respectively, over the time-window [t − T, t] evaluated at
iω, and ξ(t) ∈ R is used as an estimate of dQ/dū(û(t)), all
at time t ≥ T . The parameter c ∈ R>0 is the optimizer gain
and θ ∈ R is a fitting parameter. The values Ĥ(0) ∈ R and
Ĥ(iω) ∈ C are approximations of H(s) evaluated at s = 0



and s = iω, respectively. We assume the following on the
closeness of the estimate Ĥ to H .

Assumption 3: The approximations Ĥ(0) and Ĥ(iω) are
nonzero and finite, Ĥ(0) and H(0) have equal sign and∣∣∣∠(H(iω))− ∠(Ĥ(iω))

∣∣∣ < π

2
. (4)

Remark 1: Note that (4) only puts a restriction on one value
of ω, not over a range of ω. Moreover, since ∠(H(iω)) ∈
(−π, π], the error bound in (4) spans 50% of the range of
∠(H(iω)). Thus, Assumption 3 is a significant relaxation
compared to [10, Assumption 3] and matches many practical
scenarios, where a dither frequency can be selected based on
frequency response data with uncertainty bounds.

We can simplify the expression for ξ(t) in (3) by explicitly
calculating the solution to the minimization problem using
N(t) = a/2, which follows from Euler’s formula. Then,

ξ(t) = Ĥ(0) argmin
θ∈R

∥∥∥∥[Re{Z(t)}
Im{Z(t)}

]
− θ

a

2

[
Re{Ĥ(iω)}
Im{Ĥ(iω)}

]∥∥∥∥2
= K

[
Re{Z(t)}
Im{Z(t)}

]
, (5)

where

K =
2

a
· Ĥ(0)∣∣∣Ĥ(iω)

∣∣∣2
[

Re{Ĥ(iω)}
Im{Ĥ(iω)}

]⊤
. (6)

Note that the Euclidean norm of K reads

∥K∥ =
2

a

∣∣∣∣∣ Ĥ(0)

Ĥ(iω)

∣∣∣∣∣ ,
which we will use later in the stability proof.

V. STABILITY ANALYSIS
In this section we will show that the feedback loop in (1)

and (3) is USGPAS for sufficiently small values of c and a.
For most ESC variants USGPAS can be proven using singular
perturbation and averaging, see, e.g., [4], [8], [13], [15]. How-
ever, the fast ESC method in (3) uses a moving average filter,
which can equivalently be expressed as a functional differential
equation, but not as an ordinary differential equation. For
this type of system, the standard singular perturbation and
averaging theorems in [14] are not directly applicable. Thus,
like in [5], stability is shown using alternative arguments. We
define k = c/a2.

Theorem 1: There exist KL-functions βx and βu such that
for any ∆x > δx > 0 and ∆u > δu > 0, there exist parameters
a∗ ∈ R>0 and k∗ ∈ R>0 such that for all a ∈ (0, a∗) and
k ∈ (0, k∗) the solutions x and û of (1) and (3) satisfy for
any t ≥ t0 ≥ 0

∥x(t)− x⋆∥ ≤ βx( ∥x(t0)− x⋆∥+
∥û(t0)− u⋆∥ , a2k(t− t0)) + δx (7)

∥û(t)− u⋆∥ ≤ βu( ∥û(t0)− u⋆∥ , a2k(t− t0)) + δu (8)

if ∥x(t0)− x⋆∥ ≤ ∆x and ∥û(t0))− u⋆∥ ≤ ∆u.
Proof: The proof is structured as follows. Firstly, we

approximate the response y with a quasi-static part ŷ and a
periodic part ỹ and we derive an explicit bound on the error

of the approximation. Secondly, we approximate the response
z around ŷ over the time-window [t − T, t] using Taylor’s
Theorem. Next, the approximation of z is used to calculate Z
and how closely ξ approaches dQ/dū(û). Finally, USGPAS is
shown using a Lyapunov-like argument.

As said, we analyze the response of y and decompose it
into a quasi-static part ŷ, a periodic part ỹ, and an error term.
The response of y given initial condition x(t0) is

y(t) =

∫ t

t0

CeA(t−τ)Bû(τ)dτ +Dû(t)+∫ t

t0

CeA(t−τ)Bd(τ)dτ +Dd(t) + CeA(t−t0)x(t0).

(9)

The first term is rewritten using integration by parts as

CA−1

(
eA(t−t0)Bû(t0) +

∫ t

t0

eA(t−τ)B ˙̂u(τ)dτ −Bû(t)

)
.

Similarly, the third term on the right-hand side of (9) is
rewritten using Euler’s formula as

aRe{C(iωI −A)−1(Beiωt − eA(t−t0)Beiωt0)}.
Then, define

ŷ(t) = −CA−1Bû(t) +Dû(t) = H(0)û(t),

ỹ(t) = aRe{C(iωI −A)−1Beiωt}+Dd(t)

= aRe{H(iω)eiωt},

ȳ(t) =

∫ t

t0

CA−1eA(t−τ)B ˙̂u(τ)dτ,

y̌(t) = CeA(t−t0)x(t0) + CA−1eA(t−t0)Bû(t0)−
aCRe{(iωI −A)−1eiωt0}eA(t−t0)B.

and note that y(t) = ŷ(t) + ỹ(t) + ȳ(t) + y̌(t).
Now we wish to derive upperbounds on ȳ(t) and y̌(t). We

define for some Γ > ∆u the set

Su := {u ∈ R | |u| ≤ Γ}.
We assume and later on prove that û(t) − u⋆ ∈ Su for all
t ≥ t0. For now, given (9), û(t) − u⋆ ∈ Su, and ∥x(t0)∥ ≤
∆x + ∥x⋆∥, it follows that there exists a compact set Sy such
that y(t) ∈ Sy for all t ≥ t0. Then, there exist constants
L1, L2, L3 ∈ R>0 such that∣∣∣∣h(y(t))∣∣∣∣ ≤ L1,

∣∣∣∣dh
dy

(y(t))

∣∣∣∣ ≤ L2,

∣∣∣∣d2h
dy2

(y(t))

∣∣∣∣ ≤ L3. (10)

Then, |Z(t)| ≤ L1 and, by Cauchy-Schwarz inequality,

| ˙̂u(t)| ≤ |cξ(t)| =
∣∣∣∣a2kK [

Re{Z(t)}
Im{Z(t)}

]∣∣∣∣ ≤ a2k ∥K∥L1

for all t ≥ t0. By the subaddivity of norms and commutativity
of convolutions

|ȳ(t)| ≤
∫ t

t0

∣∣∣CA−1eAτB ˙̂u(t− τ)
∣∣∣ dτ

≤
∫ t

t0

∣∣CA−1eAτB
∣∣ dτ · a2kL1 ∥K∥

≤
∫ ∞

0

∣∣CA−1eAτB
∣∣ dτ · a2kL1 ∥K∥

= a2kL1L4 ∥K∥ = O(ak),



where L4 :=
∫∞
0

∣∣CA−1eAτB
∣∣ dτ is finite, because A is

Hurwitz: then, there exist positive constants M and λ such
that

∥∥eAτ
∥∥ ≤ Me−λτ [16, Theorem 1.9.2]. Note that in the

definition of ∥K∥ there is a term 2/a and thus we write
|ȳ(t)| = O(ak). Similarly, an upperbound on y̌(t) follows
from the Cauchy-Schwarz inequality and given bounded a is

|y̌(t)| ≤ L5Me−λ(t−t0) = O(e−λ(t−t0)),

where L5 := ∥C∥ ∥x(t0)∥ + ∥C∥
∥∥A−1

∥∥ ∥B∥ ∥û(t0)∥ +∥∥aCRe{(iωI −A)−1}
∥∥ ∥B∥. Then,

y(t) = ŷ(t) + ỹ(t) +O(ak + e−λ(t−t0)).

Secondly, we use Taylor’s Theorem, see, e.g., [17, Theorem
4.12], to approximate the static nonlinear function h around
ŷ(t). Then, for all τ ∈ [t− T, t]

z(τ) = h(ŷ(t)) +
dh
dy

(ŷ(t)) · (y(τ)− ŷ(t))

+
d2h
dy2

(ŷ(t)) · (y(τ)− ŷ(t))2 +O
(
|y(τ)− ŷ(t)|3

)
.

(11)

Note that the error term is O(| · |3) because h is three-times
differentiable as defined in Section III. Furthermore, |ỹ(τ)| =
O(a) and

|ŷ(τ)− ŷ(t)| = |H(0) · (û(τ)− û(t))|
= |H(0)| · |û(τ)− û(t)|
≤ |H(0)| · T · a2kL1 ∥K∥ = O(ak).

Thus, we can rewrite (11) as

z(τ) = h(ŷ(t)) +
dh
dy

(ŷ(t)) · ỹ(τ)

+
d2h
dy2

(ŷ(t)) · ỹ(τ)2 +O(ak + e−λ(t−t0) + a3)

(12)

since dh/dy(ŷ(t)) and d2h/dy2(ŷ(t)) are bounded by (10).
Thirdly, with (12) we can derive expressions for Z(t) and

ξ(t). From (3), (12) and the definition of ỹ(t) it follows that

Z(t) =
a

2
· dh

dy
(ŷ(t))H(iω) +O(ak + e−λ(t−t0) + a3). (13)

Now, we can determine the accuracy with which ξ(t) estimates
dQ/dū(û(t)). By (5) and (13)

ξ(t) = K · a
2
· dh

dy
(ŷ(t)) ·

[
Re{H(iω)}
Im{H(iω)}

]
+K ·O(ak + e−λ(t−t0) + a3).

Substituting K with (6) results in

ξ(t) =
dh
dy

(ŷ(t)) · Ĥ(0)∣∣∣Ĥ(iω)
∣∣∣2

[
Re{Ĥ(iω)}
Im{Ĥ(iω)}

]⊤ [
Re{H(iω)}
Im{H(iω)}

]
+O(k + e−λt/a+ a2)

=
dh
dy

(ŷ(t)) ·H(0) · Ĥ(0)

H(0)
·

∣∣∣H(iω)
∣∣∣∣∣∣Ĥ(iω)
∣∣∣ · 1∣∣∣H(iω)

∣∣∣ ∣∣∣Ĥ(iω)
∣∣∣[

Re{Ĥ(iω)}
Im{Ĥ(iω)}

]⊤ [
Re{H(iω)}
Im{H(iω)}

]
+O(k + e−λ(t−t0)/a+ a2).

Notice that dQ/dū(û(t)) = dh/dy(ŷ(t)) ·H(0) and

cos
(
∠(H(iω))− ∠(Ĥ(iω))

)
=

1∣∣∣H(iω)
∣∣∣ ∣∣∣Ĥ(iω)

∣∣∣
[

Re{Ĥ(iω)}
Im{Ĥ(iω)}

]⊤ [
Re{H(iω)}
Im{H(iω)}

]
.

Thus,

ξ(t) = L6
dQ
dū

(û(t)) +O(k + e−λ(t−t0)/a+ a2),

where

L6 :=
Ĥ(0)

H(0)

∣∣∣H(iω)
∣∣∣∣∣∣Ĥ(iω)
∣∣∣ cos

(
∠(H(iω))− ∠(Ĥ(iω))

)
,

which is positive under Assumption 3.
Finally, we show convergence of x(t) and û(t) to a neigh-

borhood of x⋆ and u⋆, respectively. The dynamics of (1) and
(3) can now be described by

ẋ(t) = Ax(t) +Bû(t) +Bd(t)

˙̂u(t) = a2kL6
dQ
dū

(û(t)) + a2kO(k + e−λ(t−t0)/a+ a2)

for all t ≥ T . The second differential equation can be rewritten
as

˙̃u(t) = a2kL6
dQ
dū

(ũ(t) + u⋆) + a2kw(t),

where w(t) is a disturbance that satisfies

|w(t)| ≤ E(k + e−λ(t−t0)/a+ a2) (14)

if
k + e−λ(t−t0)/a+ a2 < ϵ (15)

for some positive constants E and ϵ, and ũ(t) := û(t) − u⋆.
We define a Lyapunov-like function

V (ũ(t)) =
1

2L6
ũ(t)2.

Then,

V̇ (ũ(t)) = a2kũ(t)
dQ
dū

(ũ(t) + u⋆) + a2k
ũ(t)w(t)

L6
.

Define
t∗(a) = t0 −

1

λ
ln (ϵaγ1) (16)

where γ1 ∈ (0, 1) and note that by (2), ũ(t)dQ/dū(ũ(t)+u⋆)
is a negative definite function of ũ(t). It follows from [14,
Lemma 4.3] that there exists a K-function α such that

ũ(t)dQ/dū(ũ(t) + u⋆) ≤ −α(∥ũ(t)∥).

Define L7 := α(γ2δ
u), where γ2 ∈ (0, 1). Suppose Γ = ∆u+

γ2δ
u and

a2k ≤ min

{
λ,

λγ2δ
u

L1 ∥K∥ | ln(ϵaγ1)|

}
(17)

k + a2 ≤ min

{
ϵ,
L6L7

ΓE

}
− γ1ϵ. (18)



Using (16) and (17), for all 0 ≤ t0 ≤ t ≤ t∗(a)

∥ũ(t)∥ ≤ a2kL1 ∥K∥ (t− t0) + ∥ũ(t0)∥
≤ a2kL1 ∥K∥ (t∗(a)− t0) + ∥ũ(t0)∥

= −a2kL1 ∥K∥
λ

ln(ϵaγ1) + ∥ũ(t0)∥

≤ γ2δ
u + ∥ũ(t0)∥ ≤ Γ−∆u +∆u = Γ,

(19)

since ∥ũ(t0)∥ ≤ ∆u and | ˙̃u(t)| ≤ a2kL1 ∥K∥ if ∥ũ(t)∥ ≤ Γ.
This implies ũ(t) ∈ Su for all t0 ≤ t ≤ t∗(a). Using (15),
(16) and (18), for all t ≥ t∗(a)

k + e−λ(t−t0)/a+ a2 ≤ k + e−λ(t∗(a)−t0)/a+ a2 ≤ ϵ

and thus, using (14), for all ∥ũ(t)∥ ≤ Γ,

ũ(t)w(t)

L6
≤ ΓE(k + e−λ(t−t0)/a+ a2)

L6

≤ ΓE(k + e−λ(t∗(a)−t0)/a+ a2)

L6
≤ L7.

Then, for all t ≥ t∗(a) and γ2δ
u ≤ ∥ũ(t)∥ ≤ Γ

V̇ (ũ(t)) ≤ −a2kα(∥ũ(t)∥) + a2kL7

= −a2kα(∥ũ(t)∥) + a2kα(γ2δ
u)

≤ −a2kα(∥ũ(t)∥),
since α is a strictly increasing function. Together with (19),
this implies for all t ≥ t0 that ũ(t) ∈ Su and that there exists
KL-function β1 such that

∥ũ(t)∥ ≤

{
∥ũ(t0)∥+ γ2δ

u if t ≤ t∗

β1(∥ũ(t0)∥ , a2k(t− t∗(a))) + γ2δ
u if t ≥ t∗,

(20)
since ∥ũ(t⋆(a))∥ ≤ ∥ũ(t0)∥+γ2δ

u and ∥ũ(t)∥ is decreasing if
V̇ (ũ(t)) is negative, i.e., if ∥ũ(t)∥ ≥ γ2δ

u, i.e., if ∥ũ(t0)∥ ≥ 0.
Using the lowerbound 1− 1/x ≤ ln(x), the second inequality
in (17) can be simplified to

k < 4λϵ2γ2
1

γ2δu
L1 ∥K∥

∧ a <
1

ϵγ1
. (21)

and a2k(t− t∗(a)) to

a2k(t− t∗(a)) ≥ a2k(t− t0)−
k

4λϵ2γ2
1

.

Given bounded k, there exists a function βu ∈ KL, indepen-
dent from t0, a, k,∆

x,∆u, δx and δu, that upper bounds the
right half of (20) such that (8) is satisfied [18, Lemma 4.1].

Similarly, we define x̃(t) := x(t)− x⋆. Then

∥x̃(t)∥ =

∥∥∥∥eA(t−t0)x̃(t0) +

∫ t

t0

eA(t−τ)B[d(τ) + ũ(τ)]dτ
∥∥∥∥

≤ Me−λ(t−t0) ∥x̃(t0)∥︸ ︷︷ ︸
:=β2(∥x̃(t0)∥,λ(t−t0))

+
M

λ
∥B∥︸ ︷︷ ︸

:=L9

(a+ γ2δ
u)

+

∫ t

t0

eA(t−τ) ∥B∥βu(∥ũ(t0)∥ , a2k(τ − t0))dτ︸ ︷︷ ︸
≤β3(∥ũ(t0)∥,a2k(t−t0))

where β2, β3 are KL-functions and the existence of β3 follows
from the input-to-state stability of ˙̃x(t) = Ax̃(t) + Bũ(t)

[14, Exercise 4.58]. Using a2k ≤ λ in (17) and the fact
that KL-functions are decreasing in their second argument,
β2(∥x̃(t0)∥ , λ(t−t0)) ≤ β2(∥x̃(t0)∥ , a2k(t−t0)). Then, there
exists a KL-function βx such that (7) holds, if

a <
δx

L9
− γ2δ

u. (22)

From (17), (18), (21) and (22) it becomes clear that there are
γ1, γ2 ∈ (0, 1) such that there exist a∗ and k∗, independent
from t0, such that for all a ∈ (0, a∗) and k ∈ (0, k∗), upper
bounds (7) and (8) are satisfied.

Note that (17), (18) and (22) provide clear upper bounds
on the design parameters k and a. If k and a satisfy these
conditions and Assumptions 1-3 are met, then ξ(t) is approxi-
mately proportional to dQ/dū(û(t)) and û(t) will converge to
an O(k+a2)-neighborhood of u⋆, i.e., û(t)−u⋆ = O(k+a2)
as t −→ ∞. Similarly, x(t) will converge to an O(k + a)-
neighborhood of x⋆. These neighborhoods of convergence are
equivalent to those of classic ESC. Thus, a simple yet effective
tuning strategy is to reduce k and a until (17), (18) and (22)
are satisfied and the feedback loop of (1) and (3) will become
stable. Finally, note that the proof of Theorem 1 does not put
any restrictions on the dither frequency ω. Thus, any dither
frequency ω can be chosen, provided that the estimate Ĥ(iω)
satisfies Assumption 3.

VI. NUMERICAL CASE STUDY

Consider the single-input single-output Wiener system

ẋ1(t) = x2(t), ẋ2(t) = ω2
p1(u(t)− x1(t))− 2β1ωp1x2(t),

ẋ3(t) = x4(t), ẋ4(t) = ω2
p2(x1(t)− x3(t))− 2β2ωp2x4(t),

ẋ5(t) = x6(t), ẋ6(t) = ω2
p3(x3(t)− x5(t))− 2β3ωp3x6(t),

y(t) = x5(t) and z(t) = h(y(t)) := e−(y(t)−2)2 ,

where ωp1 = 2π, ωp2 = 10π, ωp3 = 14π, β1 = 0.2 and
β2 = β3 = 0.06. The system can be interpreted as three
mass-spring-damper systems in series. The system satisfies
Assumptions 1 and 2, where Q(ū) = e−(ū−2)2 . We consider
initial conditions x(0) = 0 and û(0) = 0.

Firstly, we apply classic ESC [4] and the discussed fast ESC
method (3) to the system. Both methods use a dither frequency
ω ∈ {1π, 2π, 4π} rad/s, dither amplitude a = 0.2, optimizer
gain c = 0.7. Furthermore, classic ESC uses filter frequencies
ωh = ωl = ω/2 rad/s. Fast ESC uses Ĥ(0) = H(0) and
Ĥ(iω) = H(iω). See Figure 1. It can be seen that even
with the same dither frequency the fast ESC method achieves
faster convergence to the optimum than classic ESC. This is
mainly due to the use of a moving average filter over low-
and high-pass filters, which removes the time-scale separation
between dither and derivative estimation. Furthermore, by
increasing the dither frequency convergence is achieved within
approximately 30 s with the fast ESC method. By contrast,
classic ESC starts to diverge from the optimum when using
higher dither frequencies.

Secondly, we consider the case where the discussed fast
ESC method does not posses exact knowledge of the system,
i.e., L6 ̸= 1. For simplicity, we keep Ĥ(0) = H(0) and
|Ĥ(iω)| = |H(iω)|. We only change the angle between Ĥ(iω)
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Fig. 1. Time trace of û(t), z(t) and ξ(t) for classic ESC (RGB) and
fast ESC (gray) for multiple dither frequencies.

and H(iω), i.e., Ĥ(iω) = H(iω)eiϕ where ϕ ∈ [0, π/2), such
that L6 = cos(ϕ). The used parameters are ω = 4π rad/s,
a = 0.2 and c = 0.2. See Figure 2. The figure also shows the
time trace of classic ESC with the parameters of the previous
paragraph and ω = π rad/s. It can be seen that for low values
of L6 convergence to the optimum is still achieved but on
a longer time-scale. Furthermore, for lower values of L6 the
control loop could become unstable if c and a are not lowered
in tandem, as can be seen from (18). Note that the fast ESC
method converges as fast as classic ESC when L6 ≈ 0.6. This
suggests that for this particular example, the discussed fast
ESC method is ensured to converge faster or just as fast as
classic ESC if ∠(H(iω)) is known with an accuracy of ±53°,
which is a generous margin of error.

VII. CONCLUSION
In this paper we have formally proven uniform semi-global

practical asymptotic stability of a fast extremum seeking
control (ESC) scheme. For single-input single-output Wiener
systems, this scheme exploits a course approximation of the
frequency response function at the dither frequency of the
linear part of the Wiener system to remove the time-scale
separation between system and dither and a moving average
filter to remove the time-scale separation between dither and
derivative estimator. Thus, both time-scale separations required
by classic ESC are circumvented. The analysis of this fast
ESC method required an inherently different approach from
the stability analysis of classic ESC due to the absence of time-
scale separation. Furthermore, the analysis led to a relaxation
of the required assumptions and clear upperbounds on the
design parameters of the fast ESC scheme. We demonstrated
on a numerical example that the fast ESC scheme can achieve
faster convergence than classic ESC due to the removal of the
time-scale separation between dither and plant. Additionally,
we showed the robustness of the method given an error in the
approximation of the frequency response function.

For future work, we intend to extend the method to
multi-input single-output Wiener systems and to higher-order
derivative estimation. Moreover, it is of interest to make a
comparison with other fast ESC methods on an experimental
setup and to generalize the method to more general classes of
nonlinear systems.

Fig. 2. Time trace of û(t), z(t) and ξ(t) for classic ESC (red) and fast
ESC (gray) for multiple levels of L6.
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