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The KEROGREEN project

Kerogreen aim: Demonstation of the full chain process from renewable,
electricity, CO2 (captured) and H2O to kerosene.
 Research and optimisation of individual process steps TRL (1-3) 4
 Integration phase at Karlsruhe Institute of Technology >1 L per day
 Duration 2018-2022

KIT / IMVT

DIFFER

www.kerogreen.eu
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Outline

• The KEROGREEN project

• Plasmolysis of CO2
• Scientific insights of microwave plasma based processes
• Engineering constraints during process chain integration

• Oxygen separation
• Solid Oxide Electrochemical Cell (SOEC) based approach
• Potential & Challenges

• Summary
10.1126/science.aba6118

© DIFFER / Bart van Overbeeke
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The KEROGREEN project

Main upstream (DIFFER) challenges
 Plasma modeling and optimisation
 Plasma upscaling 1 6 kW (2450 915 MHz)
 (Material) Requirements for using SOECs as

oxygen separator
 SOEC upscaling from 1 W to 1500 W

Main project challenges
 System integration of different technologies into one

container sized assembly
 Oxygen separation after plasmolysis by SOEC
 Energy and carbon efficiency of the full chain

www.kerogreen.eu

© DIFFER / Bart van Overbeeke



This project has received funding 
from the European Union‘s Horizon 
2020 Research and Innovation 
Programme under GA-Nr. 763909

PSE 2022 – 12/09/2022 – S. Welzel

>>> Registration: https://www.kerogreen.eu/249.php <<<

https://www.kerogreen.eu/249.php
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Why CO2 plasmolysis?

Flow rate
Power

µW
RF
Arc

CO2 plasmolysis: 2CO2  2CO +O2

 Input: CO2 + renewable electricity
 Output: CO2, CO and O2

 High efficiencies, …
 Main challenge downstream: O2 separation

DOI: 10.1017/CBO9780511546075

https://doi.org/10.1017/CBO9780511546075
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CO2 plasmolysis in literature

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
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Specific Energy Input (SEI, ESpec)

Conversion efficiency (α)
Energy efficiency (η)

Power
Flow Rate
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CO2 plasmolysis: Experimental insights

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 

Top view

Side view
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CO2 plasmolysis: Experimental insights

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 

Top view

Side view

Pressure
 Strong pressure dependence
 Low High confinment modes
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CO2 plasmolysis: Experimental insights

Top view

Side view

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. 2019 Plasma Sources Sci. Technol. 28 (2019) 115022

 Strong pressure dependence
 Low High confinment modes
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CO2 plasmolysis: Experimental insights

Top view

Side view

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. 2019 Plasma Sources Sci. Technol. 28 (2019) 115022

L mode H mode

Ionisation degree

 Mode transition reflected
 in ionisation degree
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CO2 plasmolysis: Experimental insights

Top view

Side view

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. 2019 Plasma Sources Sci. Technol. 28 (2019) 115022

L mode H mode

Ionisation degreeGas temperature
L mode H mode

 Mode transition reflected:
 in ionisation degree
 in gas temperature (up to 6000 K)
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CO2 plasmolysis: Flow pattern

Top view

Side view

 Strong pressure dependence
 Complex flow pattern

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 

CO2

CO2/CO/O2
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CO2 plasmolysis: Reactor Model

Top view

Side view

 Strong pressure dependence
 Complex flow pattern

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
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CO2 plasmolysis: Reactor Model Results

Top view

Side view

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
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 Mode transition reflected:
 in conversion efficiency α
 in energy efficiency η
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CO2 plasmolysis: Reactor Model Results

Top view

Side view

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819

Experiment Model

En
er

gy
 E

ffi
ci

en
cy

C
on

ve
rs

io
n 

Ef
f.

η

α

 Mode transition reflected:
 in conversion efficiency α
 in energy efficiency η
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CO2 plasmolysis: Reactor Model Results

Top view

Side view

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
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 in conversion efficiency α
 in energy efficiency η
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CO2 plasmolysis: Reactor & Plasma Model Results

 L-Mode (homogeneous): production limited, «low» gas temperatures, low ionisation degree
 H-Mode (constricted): «high» gas temperatures and ionisation degrees

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
P. Viegas et al. Plasma Sources Sci. Technol. 29, 2020, 105014
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CO2 plasmolysis: Temperature dependence

 At «intermediate» temperatures (~ 3000 K) atomic oxygen production inhibited
 At «low» temperatures (1000-2000 K) dominant CO recombination with re-heating of gas
  Downstream active plasma-zone: efficient gas cooling and product dilution is desired

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
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CO2 plasmolysis: Design criteria

(Scientific) Design Criteria
... to maximise α & η (= indicated area)

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
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CO2 plasmolysis: Design criteria

(Scientific) Design Criteria & Consequences
... to maximise α & η (= indicated area)

i. «low(er)» pressure regime: ~ 150 mbar

ii. efficient gas cooling downstream

iii.  Diluted gas stream

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
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CO2 plasmolysis: Design criteria

(Scientific) Design Criteria & Consequences
... to maximise α & η (= indicated area)

i. «low(er)» pressure regime: ~ 150 mbar
i. Vacuum pump (compression) required
ii.  Gas mixture (CO/O) is explosive dilution needed
iii. Dependence on (sharp) mode transitions
iv.  Control challenge

ii. efficient gas cooling downstream
i. Achievable with

i. High flow rates (and/or expansion)
ii. High surface areas

ii.  High flow rates reduce conversion efficiency α
iii.  Material challenge: need to withstand >> 1000 K

iii.  Diluted gas stream
i. (re-)circulation of «inert» gas and bigger size of all

components

AJ Wolf PhD Thesis, Eindhoven Univ. Technology, 2021 
AJ Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819
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CO2 plasmolysis: KEROGREEN implementation

Flow Rate

(Scientific) Design Criteria & Consequences

i. «low(er)» pressure regime: ~ 150 mbar
i. Vacuum pump (compression) required
ii.  Gas mixture (CO/O) is explosive dilution needed
iii. Dependence on (sharp) mode transitions
iv.  Control challenge («flattened» by higher flow rates)

ii. efficient gas cooling downstream
i. Achievable with

i. High flow rates (expansion)
ii. High surface areas

ii.  High flow rates reduce conversion efficiency α
iii.  Material challenge: need to withstand >> 1000 K

iii.  Diluted gas stream
i. (re-)circulation of «inert» gas and bigger size of all

components

Target range
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First plasma in 6 kW reactor (phase 1)
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CO2 plasmolysis: KEROGREEN implementation

Power
[kW]

Frequency
[MHz]

Scale

Phase 2 6 915 Container/
Module

Phase 1 6 915 Lab

(InitSF) 1-2 2450 Lab
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CO2 plasmolysis: KEROGREEN implementation
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Heat map = calculations for final applicator/reactor configuration with special thanks to F. Peeters, based on Wolf et al. J. Phys. Chem. C 2020, 124, 16806−16819 

Project
goal

Preliminary results from commissioning 
under CO2 plasma conditions

• Experimental data are close to 
calculations within 10%

• 9 – 10 Nl/min CO output has been 
shown

Potential window of  operation

CO2 plasmolysis: Reactor Model & Practise
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Preliminary results from commissioning 
under CO2 plasma conditions

• Experimental data are close to 
calculations within 10%

• 9 – 10 Nl/min CO output has been 
shown

• Stability of operation > 1 hour
• “Operator”-free

CO2 plasmolysis: Reactor Model & Practise
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Downstream Challenges: Dilution & Separation

Phase 2
6 kW / 915 MHz

O2O2

1

2

3 4 5

6

CO2 CO2/CO/O2 CO2/CO/O2 CO2/CO(/O2)

Cathode

Anode
CO 15-20%
O2 7.5-10%

CO < 14%
O2 < 7%

CO < 14%
O2 << 0.5 %?
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SOEC as oxygen separator: Concept

?

Counter
electrode

O2 separation
 Difficult process
 Lack of literature
 SOEC: Electrochemical O2 pumping

Plasma electrode reactions
 O2 + 4e-  2O2- (desired)
 CO2 + 2e-  CO + O2- (neutral)
 2CO + O2  2CO2 (unwanted)

A Pandiyan et al Journal of CO2 Utilization 57 (2022) 101904
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SOEC as oxygen separator: Complex requisites

Counter
electrode

Plasma electrode reactions
 O2 + 4e-  2O2- (desired)
 CO2 + 2e-  CO + O2- (neutral)
 2CO + O2  2CO2 (unwanted)

Functionalities
 Plasma electrode

Unconventional mixture (CO2/CO/O2)
Poor CO activity

 Electrolyte
Oxygen ion conductivity

Low resistance  thin
 For both electrodes:

Mixed electronic & ionic conductivity
Low overpotential losses (gas composition, T)

 Overall
High oxygen fluxes (increased T)

Stability

Reduced CO recombination (reduced T)
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SOEC as oxygen separator: Steps

Size [cm2] 0 0.2 ~500 ~ 5000

TRL 0 1 2-3 3-4
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SOEC as oxygen separator: single cell level

Key findings
 OCV conditions

 As the operation T is increased CO losses (via CO oxidation) are also increased
 Under polarization

 Oxygen removal is favoured at high T due to higher current densities.
 Increasing the applied potential is a knob to increase the amount of CO via CO2

electrolysis.
 Faradaic efficiency is high (> 90%)
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Downstream Challenges: Separation by SOEC

Phase 2
6 kW / 915 MHz

O2O2

1

2

3 4 5

6

CO2 CO2/CO/O2 CO2/CO/O2 CO2/CO(/O2)

N2/H2 N2/H2(/H2O)

Cathode

Anode

A Pandiyan et al Journal of CO2 Utilization 57 (2022) 101904
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Downstream Challenges: Separation by SOEC

Phase 2
6 kW / 915 MHz

O2O2

1

2

3 4 5

6

CO2 CO2/CO/O2 CO2/CO/O2 CO2/CO(/O2)

N2/H2 N2/H2(/H2O)

Cathode

Anode

• Several testbenches for
performance test of cell-stacks

• Implementation (integration)
with plasmolysis gas stream

• Performance of individual cells
not reproduced

Modified (comm.) stack Testbench for stack
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Summary / Take home messages 

O2 separation

Plasmolysis 

Integrated plasma + separator module

Plasmolysis applicator

• KEROGREEN project
• CO2 & electricity  Kerosene
• Public event 27/09/2022

• Plasmolysis of CO2
• Conversion process dominated by strong 

and sharp gradients
• Scientifically desired conditions form 

challenges for technical implementation
• Standalone, operator-free, “plug-&-play” gas 

conversion module realised
• Heat integration not (yet) considered

• Oxygen separation
• SOEC approach promising on cell level
• Testbenches realised for different scales
• Upscaling and process integration seems to

need radically new stack design
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Any Questions ?
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