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ABSTRACT 

This report describes the analysis of the MHD properties of JET discharges with the 

stability code HBT and its recently developed up-down asymmetric version HBTAS. 

The ballooning stability properties of the latest (July 1989) high-beta discharges produced 

at JET have been analyzed with HBT. One example of a discharge with a broad pressure profile 

is shown to be close to the ballooning stability limit in the region of the largest pressure 

gradient. The equilibrium that is marginally stable, with the same q-profile, shows that this limit 

is approached only locally but that much higher beta values are possible if the region of the 

large gradients can be increased towards the edge of the plasma. The evaluated high-beta 

discharges with a peaked pressure profile, produced with or without the injection of a pellet, are 

shown to exceed the ballooning limit in the plasma center by a factor of 1.5 to 2 if a monotonic 

q-profile is assumed. The stabilizing influence of raising q on axis is shown to be too small to 

stabilize this instability. Complete stabilization can be obtained with a non-monotonic q-profile 

with relatively large negative shear in the plasma center. 

The code HBTAS has been exploited to investigate the influence on the ballooning 

stability of a change from double to single X-point plasma cross-sections, as used in some of 

the high-P discharges in JET. The effects on the stability turn out to be relatively small for the 

shapes considered. 

Both global external kink modes and edge localized peeling modes have been investigated 

in the high-P ordering. Beta limits, in agreement with the Troyon scaling, are found for the 

global modes whereas the peeling modes turned out to become stable when the elongation of 

the plasma cross-section was increased from circular to elongated. 



I. INTRODUCTION 

The latest high-beta discharges (July, October 1989) produced at JET [1] have reached 

values of P close to the maximum attainable one with respect to MHD stability as predicted by 

the Troyon limit (see Fig. 1). Here PTroyon = 2.8 I [MA] / Bo [T] a [m]. The highest beta 

obtained is about 100% of the Troyon limit. These high-beta values were reached in a double

null X-point configuration during the H-mode phase. A low toroidal field (1.2 - 1.5 T) was 

used in order to take advantage of the scaling of the confinement time with the toroidal field of 

JETH-mode plasmas [2]: 1E- rp213 B0
1/3 p--1/2 and Pl~royon -1:E/B0. The additional heating 

was provided by up to 15 MW of neutral beam injection power and around 5 MW of ICRH. 

The high beta discharges were produced in the carbon tiled JET vessel coated with a monolayer 

of Beryllium. 

In this report we will analyze the MHD stability properties of JET discharges by directly 

inserting measured experimental profiles into the MHD stability code HBT (:= High Beta 

Tokamak), developed at the FOM-Instituut voor Plasmafysica by J.P. Goedbloed and 

coworkers [3 - 7]. The details about the interfacing of the diagnostic data with the stability code 

and a complete documentation of HBT, and of the up-down asymmetric version HBTAS, are to 

be found in the accompanying report "Documentation of the high-beta stability codes HBT and 

HBTAS" [8]. All the technical details on the calculations are described there. Here, we will 

keep the physics to the foreground. 

The organization of this report is as follows. In Sec. II some introductory notions of 

tokamak stability at high p are discussed. The main effort, concerned with the stability of 

ballooning modes in JET, is described in Sec. III. Here, we extensively describe the analysis of 

experimental JET discharges with the code HBT. Section IV contains the first results of the 

analysis of up-down asymmetric plasmas, like single X-point high-P or divertor plasmas, with 

the new code HBTAS. Finally, Sec. V contains some results on external kink modes at high-p, 

using the high-beta tokamak ordering. 
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II. STABILITY AT HIGH BETA 

Two scaling laws for stability of tokamaks at high ~exist which both express the limiting 

beta as a function of the total plasma current. These limits broadly refer to global kink modes 

and local ballooning modes, respectively. For simplicity, we will refer to the first criterion as 

the Troyon limit for kink modes [9,10] and to the second one as the Sykes - Wesson limit for 

ballooning modes [11,12]. It is true that in Refs. [9,10] the whole issue of MHD stability in 

tokamaks at high beta was considered, but the original result was a stress on the onset of global 

n = 1 kink modes as being the limiting factor for beta. Similarly, Refs. [11,12] were mainly 

concerned with ballooning modes limiting tokamak operation at high beta. Clearly, both classes 

of modes have to be considered simultaneously. It is still a surprising, and unexplained, fact 

that both types of modes would result in a linear relationship between the optimum beta and the 

plasma current. This relationship may be written as: 

<~> [%] = g IP [MA] 
a [m] B 0 ['f] 

(2.1) 

In this form, the value of the factor g is the single number to be computed and tested against 

experimental data. It is another surprise that the maximum value of this factor for kink modes 

and for ballooning modes would be so close as they are found to be in numerical investigations. 

Experimentally, there is ample evidence for a limiting value of<~>, but there is no conclusive 

evidence for either kink or ballooning modes. In Sec. III we will show that the limiting 

theoretical value for ballooning modes has been reached in JET and even surpassed in limited 

regions of the plasma, in particular at the magnetic axis. This is a first indication that ballooning 

modes might not represent the ultimate limit for ~ in tokamaks. 

The relationship (2.1) may be cast in a form which is more appropriate for the purpose of 

theoretical investigation of the scaling laws. Expressing <~> in decimal form (as opposed to 

percentages) and Ip in amperes, one obtains an expression in usual MKSA units: 

µ R I 
<~>/£ = f 0 0 p ' 

2it a 2 B0 

(2.2) 

where f is related to g by a simple factor: 

f = (2Jtx 10-6 x 10-2 /µ 0 ) g = g/20. (2.3) 

Hence, gTroyon = 2.8 will correspond to fTroyon = 0.14 . Next, we introduce a kind of 

equivalent safety factor, based on the total current [13]: 
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• aL B0 
q = 

µo Ro Ip 

In terms of this quantity the Troyon - Sykes - Wesson scaling law will read 

e 
<P>/E = f. * , q 

where e = L /21ta is the elongation of the plasma cross-section. 

(2.4) 

(2.5) 

In Ref. [ 13] the parameter q* was introduced for the specific purpose of studying global 

kink modes in toroidal geometry at high beta. It was argued that the safety factor q itself could 

not properly serve for that purpose since it blows up when a separatrix moves onto the plasma 

boundary, whereas kink stability does not appear to be very much influenced by this fact. This 

idea found general acceptance, as is evident by the widespread use of similar parameters 

measuring the current, like the "cylindrical q" parameter used in the INTOR and ITER studies: 

qJ = rr(a2+b2)Bo = ~ (l+b2/a2)q*. (2.6) 
µo Ro IP 

Here, we will stick to the use of q* as defined in Eq. (2.4) since it does not depend on a 

particular assumption on the geometry of the plasma cross-section (Eq. (2.6) assumes elliptical 

geometry to define a and b). 

From the definitions of <P> and PP' 

n - 2µo<p> and n = 8rrS<p> 
<p> = 2 ' 1-'p - 2 ' 

Bo µ0Ip 
(2.7) 

and the definition (2.4) for q* one obtains a simple and exact relationship between the three 

parameters <P>, Pp, and q* : 

<P>/E = 11-1 £~~' 
q 

(2.8) 

where 11 = S / (rr a2 e2) is a geometrical factor measuring the deviation of the plasma cross

section from a circular one. [For a circle, the area S=2rra2 and the elongation e=l.] The impor

tance of the relationship (2.8) is that, at high p, the overall equilibrium features are determined 

by the value of EPP' whereas global kink stability is mainly determined by the value of q*. 

How does the quadratic relationship between <P> and q* of Eq.(2.8) relate to the linear 

one expressed by Eq. (2.5)? Since kink mode stability at high p depends on both the value of 

EPp and on q* there is no a priori way to determine what the outcome of an optimalization study 

will be. Numerics tells us that a linear scaling results. The situation is different for ballooning 

modes. For a particular model equilibrium with a circular cross-section, it was shown by 

Wesson and Sykes [12] that the maximum p for ballooning modes can be written as 
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<P>/e = ~ (-)q1/qo- l), (2.9) 
qi 

where it should be noticed that q1 = q* in this case. Here, the factor-) q1/q0 really enters as a 

kind of profile effect which optimizes the shear at the plasma edge. Prescribing the value of q0, 

the relationship (2.9) then results in an approximately linear dependence of <P> on 1/q*, at 

least when q* > 2. Clearly, in order to get the linear scaling law, an additional ingredient is 

infused in the theory, viz. that%> 1. 

Since the limitation q0 > 1 no longer appears to be a hard condition in tokamak operation 

[14], the optimization of <P> with respect to ballooning modes should be reconsidered. It is 

obvious from Eq. (2.9) that there is no limit on <P> for ballooning modes if one would be able 

to freely cross the q0 = 1 boundary. The rationale to allow this should come from experimental 

evidence, but could be underpinned theoretically by the observation that, at high p, the 

ballooning equation only depends on the equilibrium value of the parameter ePp• and not on the 

values of q*, q0, or q1. The higher order effects, giving rise to dependence on q0 and the 

Mercier criterion, correspond to smaller growth rates of the modes, which can be eliminated 

theoretically by the use of the cr-stability concept [15]. Hence, ultimately, one should expect 

fast growing ballooning modes at high p to give rise to the quadratic scaling with the current as 

expressed by Eq. (2.8). One could express this in agreement with Eq. (2.9) by writing 

(2.10) 

where f(q1/q0) represents the influence of the equilibrium profiles, which is expressed solely 

by the factor ePp in the high-P ordering. 

In Fig. 2 we show an example of optimizing p with respect to ballooning modes in a 

circular cross-section plasma by the usual procedure of fixing ePp and increasing q* until the 

stability limit is reached, while either imposing the condition q0 > 1 (lower curves) or dropping 

it (upper curves). It is evident that the ballooning stability limit is substantially increased in this 

manner. 

If the ultimate result of pushing the current in tokamaks would be a quadratic scaling for 

ballooning modes and a quadratic one for kink modes, one should experimentally observe that 

kink modes take over at large currents. In the next section we present evidence that JET 

discharges have indeed crossed the theoretical ballooning limit at high P operation without 

dramatic loss of confinement. In order to avoid misunderstanding: we have not exploited any of 

the cut-off procedures discussed above. All our results are obtained on the basis of the exact 

ballooning equation, observing the Mercier criterion. 
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III. BALLOONING STABILITY OF JET HIGH BETA DISCHARGES 

In this section we will concentrate on the ideal MHD stability properties of symmetric 

high beta discharges at JET, especially on ballooning mode stability. The high-~ discharges that 

will be discussed below can be divided into two categories. The first consists of discharges 

with a broad pressure profile with large gradients near the edge of the plasma, resembling the 

'classical' H-mode pressure profile. The pressure profile of the second category has a markedly 

triangular shape with a constant pressure gradient over most of the minor radius. Examples of 

both types of discharges will be discussed with respect to their ballooning stability properties. 

Starting from the experimental equilibrium profiles, the pressure profile that is marginally stable 

to ballooning modes will be calculated, keeping the q-profile constant. This will give an 

indication of how close the discharge is to the stability limit. This will also give the maximum 

achievable beta in the case that ballooning modes pose the strongest limit on the maximum beta. 

In section III A a discharge with a broad pressure profile will be discussed. Two discharges 

with peaked pressure profiles, without and with injection of a pellet respectively, are presented 

in sections III B 1 and III B2. Conclusions are drawn in section III C. 

A. BROAD PRESSURE PROFILES. (DISCHARGE #19970) 

The high-beta discharges with broad pressure profiles have been produced during a sq an 

in low qcyI values to determine whether there is any degradation of confinement with decreasing 

qcyl [16] as was observed in DIIl-D [17]. One example of this series is discharge #19970 which 

reached the highest beta of 3.3% which is at 65% of the Troyon limit (B0 = 1.54 T, I = 

3.1 MA, a = 1.10 m, ~P = 0.43). The traces of the toroidal beta and the total input power are 

shown in Fig. 3. The discharge ends at 49.2 s with a disruption caused by the influx of carbon 

impurities. Up to the disruption there is no degradation of confinement associated with MHD 

activity. The MHD activity (see Fig. 4) shows an increase of then= 3 component relative to the 

lower mode numbers starting at ~ - 0.5 13-rroyon· There are no ELMs during the H-mode. 

The equilibrium needed for the stability analysis was calculated with the IDENTC code 

[18], which can do a nonlinear fit to the magnetic measurements and an experimental pressure 

profile. The pressure profile used in this calculation was constructed from soft x-ray data. Fig. 

5 shows the SXR profile and the result of the fit by IDENTC. Also shown is a normalized 

electron pressure profile obtained from interferometer electron density measurements and ECE 
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electron temperature measurements. Ion temperature profiles are not available for this 

discharge. 

The ballooning stability analysis was done with the HBT equilibrium and stability code. 

To model the experimental pressure gradient more accurately, we use a spline fit of the 

normalized pressure profile from the interferometer and ECE in the equilibrium. The total 

pressure is adjusted, keeping the normalized pressure profile constant, so that the correct value 

of the poloidal beta is obtained. The q-profile (see Fig. 6) is taken from a fit with IDENTC, 

giving a value of q at the boundary of 3.2, and a value of q on axis of 0.95. The shape of the 

double x-point plasma boundary, resulting from the IDENTC fit, is approximated by 

prescribing the values of the ellipticity and the triangularity. 

The result of the ballooning stability calculation is shown in a s-cx diagram [shear 

s = 2(1j1/q) (dq/d1j1) versus normalized pressure gradient a= - (4~q*2/eB2) ./w· dp/d1jf with q* 

= eLBofµ 0I, where Lis the circumference of the plasma boundary] in Fig. 7. Drawn are the 

equilibrium curve and the boundary of the first region of stability. The latter boundary is 

calculated by increasing the total pressure, keeping the shape of the pressure and the q-profile 

constant. It is clear that the region of the plasma with the largest pressure gradients is close to 

the ballooning limit. The width of this region is about 15 cm. The error bars in this case are at 

least 15%. 

In view of the fact that P/13-rroyon = 65% in this discharge and that the ballooning limit is 

approached in a region of only 15 cm width and with a minor radius of 1.10 m, it is interesting 

to see what the maximum beta is if the pressure profile is marginally stable to ballooning modes 

in the whole plasma. To calculate this marginal pressure profile, we start from the experimental 

pressure and the q-profile. Then, the pressure gradient is increased in small steps up to the 

ballooning limit, while keeping the q-profile constant. To avoid equilibria with a finite current 

density at the edge, which are likely to be unstable to external kink modes, the pressure gradient 

is optimized in the region 0.0<1jl < 'Vm, with 'l'm = 0.90-0.95. The resulting marginally stable 

profile of the pressure gradient a = -( 4~q*2/eB 2 ) ./w ·dp/d1jf versus the normalized flux 1jl = 
(<l>-<l>0)/(<l>1-<l>0) is shown in Fig. 8 (dotted line). The experimental profile is also shown (full 

line). Again, this shows that the discharge is close to marginal stability in the region 0.74 < ./w 
< 0.84. The small shear in the plasma center (0.0 < ./w < 0.45) is the cause for the small 

maximum pressure gradient in the center. This behavior is also clear from the s-cx diagram; the 

maximum gradient is following the boundary of the first region of stability of Fig. 7, which for 

q0 < 1.0 starts at the origin. 

The pressure profile that corresponds to the marginal pressure gradient is shown in Fig. 

9. The toroidal beta of this equilibrium is 7.0%. Because of the low shear in the plasma center, 
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no significant pressure gradient can be sustained there. This leads to a marginally stable 

pressure profile with a similar shape as the experimental profile The large gradient near the 

edge of the plasma up to 'JI = 0.95 causes a negative current sheet on the inside. This can be 

avoided by limiting the pressure gradient near the edge (the maximum gradient then occurs at 'JI 

= 0.90). The toroidal beta drops to 6.3% in that case, which still corresponds to 3.4 I I B0a. 

B. PEAKED PRESSURE PROFILES (DISCHARGES #20272 AND #20302) 

The high beta shots, that will be discussed in this section, show clear signs that a beta 

limit is reached in these discharges. The maximum p does not increase when a larger heating 

power is applied and the loss of confinement is probably caused by the large MHD activity. The 

values of beta are at about 100% of the Troyon limit. 

In the following we will discuss two discharges in more detail. The first is characterized 

by a pressure profile with an almost constant gradient over the minor radius. In the second 

discharge the peaking of the pressure profile is increased in the center by the injection of a pellet 

at the moment when the additional heating was switched on. 

1. 'Triangular' pressure profile (discharge #20272) 

The traces of the toroidal beta and the total heating power of the high beta discharge 

#20272 are shown in Fig. 10. At t = 52.5 s the maximum beta reaches 85% of the Troyon limit 

(I = 2.09 MA, Bo= 1.22 T, a = 1.11 m, Pr= 0.65). Together with the clipping of beta, 

fish bone activity with toroidal mode number n = 1 and poloidal mode number m = 1 and 2 and 

ELMs are observed. The correlation of the beta clipping with the MHD activity is illustrated in 

Fig. 11. Here the MHD activity for n = 1 to n = 4 and the H-u signal, illustrating the ELM 

activity, is shown. After the drop in beta at t = 52.25 s, there is a phase up to 52.5 s with 

relatively small MHD activity in which p rises steadily towards its maximum value. The 

electron pressure profile at maximum beta, as measured by the LIDAR diagnostic, is shown 

Fig. 12. The pressure gradient is almost constant along the minor radius with a larger gradient 

in the plasma center. 

The equilibrium at the maximum beta is reconstructed using the pressure profile of Fig. 

12. The shape of the plasma boundary and the q-profile are taken from the fit by IDENTC of 

the equilibrium to the magnetic data and the pressure profile. In Fig. 12 we have indicated the 

actual pressure profile of the reconstructed equilibrium. The local disturbances of the profile, 

probably due to MHD activity, are smoothed out. By taking this normalized profile and scaling 

it up to the correct value of the poloidal beta, the contribution of the fast particles to the total 
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pressure is included. The profile shape of the fast particles is not known. In the ballooning 

stability analysis the possible stabilizing effect of the fast particles is not taken into account. The 

q-profile is shown in Fig. 13. 

Ballooning stability analysis of this equilibrium yields a ballooning unstable region in the 

plasma center of about 50 cm centered around the magnetic axis. In Fig. 14 the normalized 

pressure gradient a= -(4~q*2/eB 2) )'lf·dp/d'lf in the plasma center (0 <'I'< 0.1) is shown 

as a function of the normalized flux 'I'= (<l>-<l>0)/(<l>1-<l>0). Also shown is the pressure gradient 

that would be marginally stable to ballooning modes. This pressure gradient is determined by 

decreasing the pressure gradient in the unstable region only (0.14 < )'If< 0.26) while other 

parameters are kept constant. This shows that the experimental pressure gradient at its 

maximum exceeds the ballooning limit by a factor of 1.5. 

A possible explanation within the framework of ideal MHD could be that q on axis is 

much larger than 1.0. In that case there is, for low values of the shear, no unstable region 

between the first and the second region of stability and the pressure gradient can become 

arbitrarily large (19]. However, in view of the fact that fishbones with m;n = lfi are observed, 

it is likely that q on axis is close to 1.0. 

A different q-profile that could stabilize the large gradients in the center, but with q on 

axis near or below one, has a large enough negative global shear in the plasma center (20]. In 

this case there is a stability boundary in the center but it lies at higher values of the pressure 

gradient . We will return to this in the next section. 

The unstable region near the origin in the s-alfa diagram could also be stabilized by non

ideal MHD effects like stabilization by fast particles (21], or stabilization of the large mode 

numbers of the ballooning instability in the plasma center by finite Larmor radius effects (22]. 

In the same way as for the discharge with the broad pressure profile, we calculated the 

profile that is marginally stable to ballooning modes for this discharge. The resulting profile of 

the pressure gradient versus the normalized flux is shown in Fig. 15. It shows that, apart from 

the instability in the center, the experimental pressure profile is close to the ballooning boundary 

in the region 0.08 <'I' < 0.30. Thus, the discharge is exceeding or approaching the ballooning 

stability limit in a region of more than 40% of the minor radius of the plasma (-0.36 a < r < 

0.59 a). 

The pressure profile of the marginally stable equilibrium is shown in Fig. 16. The 

maximum toroidal beta is about 6.3%, which corresponds to 4.0 Ip/ B0 a. The shape of the 

profile is triangular, like the experimental profile, however with the largest gradients on the 

outside instead of in the center. This is caused by the relatively large shear in the plasma center 
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which increases towards the plasma boundary The toroidal current density of this equilibrium 

has a negative current sheet on the inside of the plasma. Optimizing the pressure profile with the 

constraint of a positive current density will give a lower toroidal beta. 

2. Peaked pressure profile with pellet injection (discharge #20302) 

The peakedness of the pressure profile can be enhanced even further with the injection of 

a pellet in the plasma center. This was done in discharge #20302. At t = 51.0 s a 4 mm pellet 

was injected and 14 MW of neutral beam heating power was switched on. Traces of the toroidal 

beta and the total heating power are shown in Fig. 17. This discharge reaches a maximum beta 

of 0.03, which corresponds to 80% of the Troyon limit (IP= 2.1 MA, B0 = 1.4 T, a = 1.07 m, 

~P = 0.70). In contrast to the previous discharge, there is no clipping of beta but a saturation 

associated with the onset of ELM activity. During the discharge a n = 1 mode is present, 

whose amplitude is growing with beta, causing an oscillation of the plasma center. A beta 

collapse occurs at t = 51.8 s at the maximum of the n = 1 and n = 2 mode activity when the 

modes lock. 

The electron pressure profile at t = 51.5 s during the beta saturation phase is shown in 

Fig. 18. The ion pressure profile obtained from the ion temperature from the charge exchange 

diagnostic and the electron density profile has the same shape as the electron pressure profile. 

Again the contribution of the fast particles is included in the total pressure. 

For the equilibrium reconstruction we use the electron pressure profile from Fig. 18. 

Information on the q-profile is obtained from soft x-ray data. Subtraction of two SXR intensity 

profiles at times of opposite phase of the MHD oscillation results in a 'displacement' as a 

function of the minor radius. The q-profile was taken such that the q = 1, 2 and 3 surfaces 

coincide with the different maxima of the displacement. The resulting q-profile is shown in Fig. 

19. 

The result of the ballooning mode analysis is shown in Fig. 20. Again the equilibrium 

profiles of the experimental and of the marginal pressure gradient are shown. Also in this 

discharge the measured pressure gradient exceeds the ballooning limit by a factor of two. The 

pressure profile that is marginally stable in the region where the experimental profile is unstable 

is indicated in Fig. 18. The marginal profile lies well outside the error bars of the measured 

electron pressure profile. 

As mentioned in the previous section, changes in the q-profile may stabilize the large 

gradients in the plasma center. To check whether a large enough opening to the second region 

of stability appears when q on axis is increased, the ballooning unstable area as a function of q0 
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was calculated (see Fig. 21). This shows that raising q0 above one can stabilize part of the 

unstable region on the low shear side (0.0 < \If < 0.06). At larger values of the shear, there 

remains a region where the maximum pressure gradient is limited by the first region of stability. 

Another possible way of stabilizing the large gradients is to assume a non-monotonic q

profile with negative global shear in the region of the large gradients. The q-profile with which 

the pressure profile would be marginally stable is calculated by changing the q-profile in small 

steps, thereby slowly extending the region of negative shear and decreasing the shear in the 

center. This results in the q-profile shown in Fig. 22, where q on axis is 1.1 and the minimum 

value is 0.9. The non-monotonic q-profile requires a hollow current density profile (see 

Fig. 23). Current density profiles like this are unlikely if only the ohmic contribution to the 

total current is considered. However, the analysis with the TRANSP code (which solves the 

current diffusion equation in time) for previous pellet shots shows that the large gradients, 

caused by the strong additional heating after the injection of a pellet, give rise to a considerable 

contribution of the bootstrap current to the total current. This bootstrap current is peaked off 

axis creating a hollow current density profile similar to the profile of Fig. 23 [23]. 

C. CONCLUSIONS 

The two types of high beta discharges produced at JET, that is discharges with broad and 

with peaked pressure profiles, have been shown to have very different properties with respect 

to ballooning mode stability. The stability limit is approached locally in both types of 

discharges. 

In the evaluated discharge with the broad pressure profile and a q-profile which is flat or 

slightly hollow in the plasma center and has large shear near the edge, the maximum pressure 

gradient near the edge is close to the ballooning stability limit. The pressure profile that is mar

ginally stable to ballooning modes, with the same q-profile, shows that higher beta values can 

be ballooning stable if the region with the large gradients can be extended to the plasma edge. 

In the discharges with the peaked pressure profile, the large gradients in the plasma center 

exceed the ballooning stability limit by a factor of 1.5 to 2 if a monotonic q-profile is assumed. 

It must be noted that this instability is not caused by the low shear in the center, as was found in 

previous high beta discharges [24]. It was shown that the unstable region still exists when q on 

axis is increased from 0.9 to 1.4. Complete stabilization is possible with a non-monotonic q

profile with large negative shear in the center. The contribution of the bootstrap current can 

provide the hollow current density profile needed for this q-profile. Outside the unstable central 

part, the almost constant pressure gradient is just below the ballooning boundary over more 
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than 40 % of the minor radius. Also in the case of peaked pressure profiles higher values of 

beta, stable to ballooning modes, are possible if the pressure gradient on the outside of the 

plasma can be increased. 
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IV. SINGLE AND DOUBLE NULL X-POINT PLASMAS 

In order to have a better control over the impurity content of the plasma, in the near future 

JET will operate with a divertor geometry with a single X-point. Also, during past high J3 
operation both single and double X-point plasma shapes have been used (although the majority 

of high J3 discharges had a double X-point shape). Here, we study the effects of the change of 

the plasma shape from a double to a single X-point geometry on the ballooning mode stability 

properties of the plasma. 

A. STABILITY OF UP-DOWN ASYMMETRIC EQUILIBRIA 

The study of single X-point divertor discharges requires the handling of up-down 

asymmetric equilibria. To that end, we have extended the equilibrium and ballooning parts of 

HBT with the option to analyze asymmetric equilibria. This extension is fully documented in 

the accompanying report [8]. The present section is a first illustration of this new option, which 

may be extensively exploited for the study of future pumped divertor discharges. 

The effect of non up-down symmetry may be understood as creating a difference in the 

triangularity between the upper and lower halves of the plasma. Since the influence of the 

triangularity on the MHD stability of up-down symmetric plasmas is relatively well known, we 

can estimate what the effect will be. Increasing the triangularity (i.e. changing the shape from 

an ellipse to a D shape) will cause an increase of the poloidal field on the outside of the torus, 

thereby decreasing the length of the field lines in the bad curvature region of the plasma. This 

will have a stabilizing effect on ballooning modes. For example, it was shown in [25] that the 

maximum J3 for ballooning modes increases linearly from J3 = 3.5 % to 4.5%, for the profiles 

considered, when the triangularity changes from 0.0 to 0.50. 

Another effect of increasing the triangularity is that the corners at the top and bottom of 

the plasma boundary become less round. This will increase the total shear near the plasma 

boundary, which again has a stabilizing effect. Also, the local shear increases rather rapidly 

near the corners. The influence on the ballooning mode stability of the increase of the local 

shear is not obvious because the integrated local shear appears both in the stabilizing term of the 

field line bending and in the destabilizing term in connection with the tangential curvature. 

Near the magnetic axis the influence of the triangularity is best illustrated by the Mercier 

criterion [26] : 
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qo{l--4-[l i2-1(K2_28) + (K-1)2~0]} > 1, 
3+K2 4 K2+ 1 £ K(K+ 1) p 

(4.1) 

where K is the ellipticity, 8 is the triangularity, Eis the local inverse aspect ratio, and ~p0 is the 

poloidal beta on axis. This implies that for K = 1.0 the triangularity has no effect on the stability 

but for K > 1 triangularity adds a stabilizing term. 

B. INFLUENCE OF THE CHANGE FROM DOUBLE TO SINGLE X-POINT 

In this section we will compare the ballooning stability properties of single and double 

null X-point plasma shapes. For a particular equilibrium with a double X-point shape, the 

marginally stable pressure profile is calculated. Then the plasma shape is changed to a single 

null X-point shape, while keeping the other equilibrium quantities the same, and the marginally 

stable pressure profile is calculated again. Comparison of these two marginally stable pressure 

profiles will then show what the influence is of the different shapes. The X-point shape is 

approximated with the appropriate value of the triangularity. 

For the marginally stable equilibria with a double X-point shape, we use the equilibria of 

the high beta discharges of the previous paragraphs of which the marginally stable pressure 

profiles were calculated. Both the example with a broad pressure profile (discharge #19970) 

and the one with a peaked pressure profile (discharge #20272) will be discussed. 

As an example of the different plasma boundaries, the two equilibria of discharge #19970 

with a double and a single X-point are shown in Figs. 24a and 24b, respectively. The ellipticity 

of the plasma boundary is the same for both cases. The upper triangularity changes from 0.38 

to 0.15 while the lower part of the plasma boundary is unchanged. The mentioned change in the 

local shear is illustrated in Figs. 25a and 25b. In this figure the local shear versus the poloidal 

angle is shown on the flux surface \jf = 0.80 . 

The result of the calculation of the marginal pressure profiles is shown Fig. 26. This 

picture shows the normalized pressure gradient a versus the normalized flux. The lower two 

curves in Fig. 26 correspond to the equilibrium with the broad pressure profile (#19970). The 

upper two curves correspond to the case with a triangular pressure profile (#20272). The two 

solid and dashed curves distinguish the double and single X-point plasma boundaries, 

respectively. For both cases, decreasing the upper triangularity also decreases the maximum 

pressure gradient that is stable to ballooning modes. This is consistent with the general 

stabilizing effect of adding triangularity. The figure also shows that the effect of changing from 

double to single X-point plasmas is rather small(< 10%) for typical JET parameters. 
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For low-n modes, the effect on the stability of different values for upper and lower 

triangularity may be different. Degtyarev et al. (27] have calculated marginally stable equilibria 

to both low-n and ballooning modes for typical ITER design parameters. They found that the 

external kink modes pose a stronger constraint on the maximum 13 for single X-point plasmas 

than for double X-point plasmas. When the symmetrical plasma has a triangularity of 0.4 and 

the asymmetrical plasma has triangularities of 0.2 and 0.6, the maximum 13 decreased from 6.0 

to 4.5 %. How the situation changes for typical JET parameters remains to investigated. 
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V. EXTERNAL KINK MODES 

In this section the results are presented of the analysis of external kink modes at high ~

Since these modes are treated with the high-P ordering in the program HBT, some effort is 

needed to convert the experimental equilibrium data to the equivalent profiles that represent the 

dominant high-P part. Past experience with HBT [7] has shown that all important high-~ 

physics effects, like the Troyan, Sykes, and Wesson scalings, are included but that the neglect 

of terms of higher order than £ 2 in the inverse aspect ratio may lead to some uncertainty with 

respect to modes that grow on a slower time scale. With this proviso, we will study external 

kink modes for the JET discharges treated without an ordering in the sections III and IV. 

A. GLOBAL KINK MODES 

Discharge #20272 has been investigated with respect to the high-P external kink limit. 

For reasons of accuracy, the outermost flux surfaces close to the separatrix have been 

eliminated in this study, effectively resulting in a less elongated cross-section. The adapted 

experimental profiles are shown in Fig. 27. Here we take q on axis to be slightly above one 

(qo = 1.03) in order to avoid the situation where the internal kink will limit the maximum beta. 

Especially in this discharge with a peaked pressure profile, this would lead to a low value of the 

~ limit. A high-P scaling law for external kink modes is obtained by simultaneously pushing 

the value of <P> and scanning the parameter q*. For this discharge, we find the maximum beta 

limited by an external kink mode to be the same as the P value as given by the Troyan scaling 

law. This value is well below the maximum p limited by ballooning modes only (see par. 

ffi.B.2). However in that case in determining the maximum ~we optimized the pressure profile 

with a constant q-profile whereas here we keep the shape of both profiles the same and increase 

the total pressure. 

Typical high-P discharges in JET have q profiles with a value of q0 around 1 and a value 

of q1 > 2. Hence, one expects global kink modes with m = 1 and m = 2 components, where the 

m = 1 component will be largely internal, whereas the external part will have a dominant m = 2 

contribution. This is confirmed by the flow pattern of the modes depicted in Fig. 28. Here we 

have chosen a mode which is at the border of the Troyan stability boundary. In Fig. 28a the 

mode is stabilized by putting a conducting shell at the plasma boundary. Consequently, the 

flow pattern just shows the m = 1 contribution of the internal kink mode. Removing the shell 
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leads to the coupled m = 1 and m = 2 mode pattern depicted in Fig. 28b. This pattern is typical 

for the pressure dominated kink modes which lead to the Troyon beta limit. 

B . PEELING MODES 

Edge localized modes (ELM's) are frequently observed on the various diagnostics during 

an H-mode phase. The occurrence of ELM's is associated with particle loss at the plasma 

boundary, thereby reducing the particle and energy confinement time. Hence, ELM's also 

reduce the impurity content of the plasma, so that they can be used for the production of long 

duration H-modes. 

Both pre- and postcursors of ELM's have been observed on the magnetic signals. In 

ASDEX [28] as well as in JET [29], the precursors have a toroidal mode number n = 1. The 

corresponding poloidal mode numbers are relatively high, i.e. m = 3 - 4 in ASDEX and m = 5 -

10 in JET. In general, two types of ELM's can be distinguished, viz. giant ELM's and smaller 

ELM's of the so-called grassy variety. In DIII-D [30] it was shown that the occurrence of a 

giant ELM correlates well with the presence of a large pressure gradient at the plasma edge 

reaching the first stability boundary. This does not apply for the smaller ELM's. Also, it was 

shown in Ref. [31] that the current density near an X-point can cause considerable changes in 

the ballooning stability boundary. 

It has recently been suggested [32] that ELM's may be manifestations of the so-called 

peeling mode [33]. This mode is a milder form of the external kink mode driven by a finite 

gradient of the current density at the plasma edge. The mode is characterized by a perturbation 

which is localized in a narrow region near the plasma boundary. From standard low-~ tokamak 

theory [34] it is known that peeling modes may become unstable when a rational q-surface lies 

just outside the plasma boundary. Correspondingly, the unstable region in the parameter q1 

extends from integer values m down to a value m - t>m, where, for parabolic current density 

profiles, the width t>m of this region decreases with increasing m. The localization of the 

mode, i.e. whether the mode is a global external kink or a peeling mode localized at the plasma 

boundary, depends on the details of the shape of the toroidal current density profile. In Ref. 

[35] it was shown that, for finite aspect ratio plasmas with a circular boundary, the stability 

boundary remains qualitatively the same, but there is a quantitative change due to the 

dependence of the current profile on the aspect ratio. 

To study the relevance of peeling modes for plasma conditions at JET we have 

investigated the peaked pressure equilibrium of discharge #20272 again. In order to be able to 

distinguish between the pressure dominated kinks, studied in the previous section, and the 
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current driven peeling modes, we have lowered the value of the poloidal beta to half of its 

original value. This is justified by the the fact that ELM's are observed at low values of<~>. 

Furthermore, in order to excite the peeling mode, we have artificially added a finite current 

density at the plasma edge.The resulting current density and q-profiles are shown in fig. 29. 

The low-n stability (n=l) of this equilibrium was then calculated by scanning for the growth 

rate as a function of q*. By varying q* we also varied the value of q1 (from 3.2 down to 2.5) 

while keeping the ratio q1/q0 constant. However, to our surprise, no peeling mode was found 

in this manner. The equilibria turned out to be stable for all values of q considered. Also, the 

mode structure of the stable modes in this region did not show any localized peeling mode 

features. 

Since peeling modes are easily excited in a circular plasma, we then changed the plasma 

shape of the original equilibrium to a circular one, while keeping the other parameters the same. 

As expected, for this case the equilibrium becomes unstable to m = 3, n = 1 peeling modes 

when q1 < 3. An example of the flow field of these modes is shown in Fig. 30a. Increasing the 

elongation of the plasma cross-section by changing the ellipticity from 1.0 to 1.2 basically 

leaves the mode structure unchanged, as shown in fig. 30b (where one should recall that the 

sign of a linear mode has no physical meaning) but the growth rate is drastically reduced. For 

JET relevant values of the ellipticity (ellipticity> 1.4) the mode turns out to be completely 

stable. 

Consequently, our first conclusion is that peeling mode might be less important in 

elongated plasmas like JET, as compared to circular plasmas like TFTR. 
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Fig. 14 The normalized pressure gradient as a function of the flux of the marginally 

stable equilibrium (open dots) and of the experimental equilibrium (filled dots) in 

the plasma center of discharge #20272. 
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Fig. 15 A comparison of the pressure gradient profile of the reconstructed equilibrium 

and of the marginally stable pressure gradient profile of discharge #20272, 

t = 52.5 s. 
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Fig. 16 The pressure profile corresponding to the marginally stable pressure gradient 

profile of discharge #20272. 
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Fig. 17 The traces of the toroidal beta and the total heating power of discharge #20302. 
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Fig. 18 The electron pressure profile obtained from the LIDAR diagnostic of discharge 

#20302, t ~ 51.S s, with the upper and lower limits of the error bars (dashed 

curves). The lowest curve in the center represents the pressure profile that is 

marginally stable in the plasma center. 
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Fig. 19 The normalized q-profile of discharge #20302, t = 51.5 s. The crosses indicate the 

maxima of the displacement obk1incd from SXR data. 
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Fig. 20 The profiles of the normalized pressure gradient of the experimental equilibrium 

(filled dots) and of the equilibrium that is marginally stable (open dots) in the 

plasma center. 
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Fig. 21 The size of the ballooning unstable region as a function of q on axis. 



4.00 

3.00 

2.00 

1.00 

0.00 
-1 .00 -0.50 

43 

0.00 
x 

0.50 1 .00 

Fig. 22 The q-profile for which the equilibrium with the pressure profile of Fig. 18 is 

marginally stable to ballooning modes in the plasma center. 
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Fig. 23 The current density profile of the equilibrium with the non-monotonic q-profile 

of Fig. 22. 
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Fig. 24 The equilibrium flux surfaces of the double x-point plasma (left) and the single 

x-point plasma (right). 
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Fig. 25 The local shear as a function of the poloidal angle on the 'I'= 0.8 surface for the 

two equilibria of Fig. 24 ,i.e. for the double x-point (left) and the single x-point 
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Fig. 26 Comparison of the marginally stable pressure profiles for a double and a single 

x-point plasma shape. The lower two curves belong to the equilibrium with a 

broad pressure profile (#19970), the upper two belong to the case with a peaked 

pressure profile (#20272). The dashed curves represent the single x-point curves, 

the full lines the double x-point curves. 
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Fig. 27 The profiles of the flux, the pressure, the toroidal current and the q-profile of the 

high beta equilibrium of discharge #20272. 
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Fig. 28 The Oow pattern of the mode of the high beta equilibrium of discharge #20272 al 

the Troyan limit. a) with the wall on the plasma. b) with lhc wall al infinity. 
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Fig. 29 The toroidal current density profile with a finite current al the edge and the 

resulting q-profile of the equilibrium used in the stability calculations of the 

peeling mode. 
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Fig. 30 The flow patterns of the peeling mode for different ellipticities. a) K = 1.0 
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