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ABSTRACT 

The ideal magnetohydrodynamic stability code HBT (High Beta Tokamak) has recently 

been extended to include arbitrary non up-down symmetric plasma shapes. Both the HBT and 

the new asymmetric version, called HBTAS, have been installed at JET. The HBT and HBTAS 

codes can be used to study the ballooning mode stability properties (exact) and the low-n mode 

stability (in the high-~ approximation) of JET discharges. In this report both codes are 

described in some detail. The equations and the numerical methods used are given. Further, 

how to use HBT(AS) in general and specifically for the study of actual JET discharges is 

explained. Detailed descriptions of all the input and output parameters of HBT(AS) are given in 

the appendices. 



I 

I. INTRODUCTION 

The HBT (High Beta Tokamak) code is an ideal magnetohydrodynamic equilibrium and 

stability code developed at the FOM Institute for Plasma Physics 'Rijnhuizen' by J.P. 

Goedbloed [l] and coworkers. Originally it was used for high-P optimization studies. 

However, HBT can equally well be used for the study of the MHD stability properties of actual 

JET discharges. 

In the near future the JET configuration will be changed to a divertor geometry with a 

single x-point plasma shape. Also during past high-P operation, single x-point plasma shapes 

were used. To be able to investigate the MHD stability properties of these plasmas, HBT has 

been extended to include arbitrary non up-down symmetric plasma shapes. Both the new code, 

called HBTAS, and HBT have been installed at JET. Results of a study of the stability 

properties of JET high-P discharges with HBT and HBTAS are discussed in an accompanying 

report [2]. 

In this report, the codes HBT and HBTAS are described in some detail. In section II and 

III respectively, the equations used in the equilibrium and in the low-n and ballooning mode 

stability computations are given. Also the numerical methods that are applied in HBT and 

HBTAS are discussed. For up-down symmetric equilibria, the plasma boundary and the 

position of the magnetic axis can be specified before the actual equilibrium calculation. This can 

be exploited through the use of a conformal mapping which maps the plasma boundary onto a 

circle and the magnetic axis onto the origin of the circle. In this computational plane the actual 

equilibrium computation becomes much easier and more accurate. In the case of a general non 

up-down symmetric plasma shape the magnetic axis cannot be chosen freely and an additional 

iteration is needed to determine the position of the magnetic axis. Both the up-down symmetric 

equilibrium and the new non up-down symmetric equilibrium are discussed in sec. II.A and B. 

The conformal mapping is described in sec. 11.C. In sec. 11.D the results of a test of the 

asymmetric equilibrium with an asymmetric Soloviev equilibrium are given. 

The parts concerning the stability of low-n modes and of ballooning modes are presented 

in sec III A and B respectively. 

The remaining part of this report contains an explanation of the use of the HBT and 

HBTAS codes at JET. In sec. IV a general description of the codes is given in terms of the four 

modules (see fig. 4.1) ofHBT(AS) and the necessary input parameters. A full list of all input 

and output quantities is given in the appendices. In sec. V the interface of HBT with IDENTC, 
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the main source of equilibrium data at JET, is given. It describes the relation between IDENTC 

output parameters and HBT input parameters. An example of a complete run of HBT using 

IDENTC data is presented in appendix F. To be able to use experimentally measured 

equilibrium profiles like for example a pressure profile as measured by the LID AR diagnostic, 

(sec. V.B), HBT(AS) has the facility to specify the input profiles through the coefficients of a 

spline interpolation of an arbitrary profile. This is described in appendix G. 
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EQUILIBRIUM 

A. NORMALIZATION 

The force balance equation, Vp = j x B in a plasma in toroidal geometry is given by the 

Grad- Shafranov equation 

a { 1 a<I>} a
2

<I> . 
R i1R R i)R + az2 = µ0RJ4,, (2.1) 

where <I> is the poloidal flux, J<I> is the toroidal current density, R is the distance from the axis of 

symmetry, and Z is the vertical coordinate. The toroidal symmetry also allows the right-hand 

side of Eq. (2.1) to be written in terms of two flux functions, with the pressure p(<I>) and a 

diamagnetic profile f(<I>) =RB<!>: 

Rj = - R2 dp(<I>) - _1_ df2(<I>) . (2.2) 
<I> d<I> 2µ0 d<I> 

The formulation of the equilibrium problem of finding <I>(R,Z) in terms of physical quantities 

contains two trivial scaling parameters, viz. the vacuum magnetic field B0 and the scalelength a 

(the minor radius of the torus) of the problem. They just provide the dimensions of the physical 

quantities but do not enter the problem otherwise. Similarly, the total poloidal flux 2it(<I>1--<I>0) 

will only enter as a scaling parameter normalizing the J<I> and Bel> profiles. This scaling is 

accounted for by the parameter a = a2Bof(<I>1-<I>0). The two arbitrary profiles p(<I>) and f(<I>) 

can then be normalized as follows: 

P('Jf) = (µ0~2). p(<I>) , 
eB0 

2 
2 E<X (2 2~1) F ('If) = 22 f (<I>) - Ro 1SQ , 

a B0 
(2.3) 

where the normalized flux 'If= (<I>--<I>0)/(<I>1--<I>0) will now play the role of a radial coordinate. 

The other physical parameters can then be scaled as: 

Bel> = B0 • -- 1 + - • F2('Jf) , 1 [ E ]l/2 
1 +EX <X2 

eB0 -1 
B = - · --V''Jf x eel> , 

P a !+ex 

Jcj> = --0 • - ( 1 + ex)P'('Jf) + , . EB -1 [ FF'(\jf)] 
~aa e l+ex 
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jp = ----f- · 1 + 2 • F
2
('Jf) V'JI x e.p , 

EB FF'('Jf) [ E ]-1/2 
µ0a. a l+Ex a. 

(2.4) 

where the dimensionless coordinates x = (R-RQJ/(a) and y = Z/a are exploited. 

At high p, the two profiles P('JI) and -l/2 F2('Jf) only differ O(E) from each other. 

Therefore, it is expedient to define a new flux function: 

G('JI) = .!. [ P('JI) + ! F2('JI)] . 
E 

The Grad-Shafranov equation then becomes 

'l'xx + 'l'yy - _E_'l'x = A [r('Jf) + Bx(l +tEx) TI('Jf)], 
l+Ex 

(2.5) 

(2.6) 

where we have separated the amplitudes from the shapes of the derivatives of the flux functions 

G and P by defining the unit profiles: 

t AB TI('JI) = - P'('JI) , A r('JI) = - G'('JI) , (2.7) 

with TI(O) = r(O) = 1. In our method of solution, to be elaborated below, the parameters A and 

B will become eigenvalues of the problem. 

B. NUMERICAL SOLUTION 

Numerical solution of Eq. (2.6) requires the specification of boundary conditions. Here 

we consider a fixed and given shape of the plasma boundary. The boundary condition at the 

plasma-vacuum interface, i.e. B·n = 0 , then becomes: 

'I' = 1 at the plasma boundary . (2.8) 

With this boundary condition specified, Eq. (2.6) can be solved in the interior of the plasma 

boundary. IfEq. (6) is rewritten in the form 

~'I' = f('Jf,x,y) , (2.9) 

it can be considered as a kind of Poisson equation. When f is independent of 'JI and the plasma 

boundary is circular, Eq. (2.9) can easily be integrated. Fourier transforming: 

M 
'I' = L,' 'l'm(s) eimt ' 

m=O 

M 
f = L,' fm(s) eimt' 

m=O 

Equation (2.9) is then solved by 

where x + iy = seimt. (2.10) 
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s s' 

'l'm(s) = 2 limo + Sm J ds' s•-<2m+l) J ds" s" m+l fm(s") , 
0 

where the boundary condition \j/(S=I) = 1 is satisfied. 

(2.11) 

The limitation of a circular plasma boundary can be removed by the use of a conformal 

map. We apply a coordinate transformation with an analytical function, such that the arbitrary 

plasma boundary is mapped onto a circle in the new coordinate plane. 

M 

Z = L <l>m Wm 

m=O 

Physical plane 

Fig. 2.1 Conformal mapping 

In the mapped (s,t) plane Eq. (2.9) then becomes 

A\j/ = h2 f(\j/, S, t) • 

Computational plane 

(2.12) 

where h(s,t) = ldz/dwl is the scale factor of the conformal mapping. Again, if f is independent 

of \j/, Eq. (2.12) can be solved as before. 

In the general case, where f does depend on 'l'· Eq. (2.12) can be solved with a Picard 

iteration: 

A'l'n+l = f(\j/0 (s,t), s, t), (2.13) 

where the solution (2.11) is exploited at each step. In principle, this solves the Grad-Shafranov 

equation. However, the representation of nested flux surfaces by means of a Fourier series and 

exploiting a coordinate system with a shifted origin with respect to the magnetic axis, is not 

very accurate. The accuracy of the solution can be greatly enhanced by specifying the position 

of the magnetic axis forehand and using a conformal mapping which maps this point onto the 
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origin of the computational plane. Moreover, the behaviour of the solution \jf(S,t) near the 

magnetic axis will be known analytically, viz.: \jfo(s) - s2
, \jf 1 (s) - s3

, and 'Vm - sm (m;,, 2) . 

Thus, the equilibrium quantities on the magnetic axis can be calculated very accurately. 

For a general non up-down symmetric plasmashape, however, specifying the position of 

the magnetic axis yields three additional boundary conditions: 

\jf(RM, ZM) = 0 , ~ (RM,ZM) = 0 , and ~ (RM,ZM) = 0 , 

and apparently no degrees of freedom left to satisfy them. 

(2.14) 

In the case of up-down symmetric plasmas [ \jf(R,Z) = \jf(R-Z)]. when the condition 

d\jf/dZ = 0 is trivially satisfied, the two additional degrees of freedom can be obtained if the 

values of A and B in Eq. (2.6) are not specified forehand but are treated as eigenvalues of the 

problem. Thus, instead of the usual procedure of specifying the total pressure and the 

diamagnetic profile, only the shape of the profiles is specified whereas the absolute magnitudes 

are implicity given by the position of the magnetic axis. 

Still restricting the discussion to up­

down symmetric equilibria, the computation 

proceeds as follows. With a given position 

lix of the magnetic axis, the calculation of a 

PLASMA BOUNDARY 

MAGN. AXIS: 0,, 

CONFORMAL 
MAPPING 

computational 
grid 

EQUILIBRIUM 

ljl(s,t) 

computational grid centered at the magnetic 

axis has to be done only once, after which 

the equilibrium can be calculated (see Fig. 

2.2a). At each step of the iteration (2.11) 

the values of A and B then follow from the 

condition that s = 0 be the magnetic axis, so 

that the m = 0 and m = 1 harmonics should 

satisfy: 
Fig. 2.2a Flow diagram or the symmetric equilibrium 

I s' 

\jfo(s;O) = 2 - A J ds' ~· f ds" s" f0(s") = 0, (2.15) 
0 0 

I 

aa~
0

(s;O) =-tAfds'(l-s'2)f1(s') = 0, (2.16) 
0 

where both 'Vm and fm are real. Notice that Eq. (2.15) provides the value of A explicity and Eq. 

(2.16) provides the value of B implicitly through the function f1 (s). 



7 

In the general non up-down symmetric case, the Fourier coefficients 'Vm and fm are 

complex. Condition (2.16) should then be satisfied for both the real and imaginary part. 

Because no more constants are available to be used as an eigenvalue, the position of the 

magnetic axis can then no longer be specified in advance. Therefore, an extra iteration loop is 

needed to determine the value of the vertical coordinate of the magnetic axis, oY' for which both 

the real and imaginary part of condition (2.14) give the same value for B. 

During the iteration on Oy, we have a situation similar to the one we had before ,iJe 

magnetic axis was mapped onto the origin of the computational plane. The equilibrium iteration 

will converge to a solution with the magnetic axis approximately at the correct position (i.e., not 

yet on the origin of the computational plane). This converged equilibrium then gives a new 

estimate of Oy. This value then is returned to the conformal mapping, after which a new 

equilibrium iteration can be started (see Fig. 2.2b). This procedure is repeated until both the real 

and imaginary part of condition (2.16) yield the same value for B. 

PLASMA BOUNDARY 
CONFORMAL 

MAPPING 
MAGN. AXIS' Ii,. a, 

computational 
grid 

Bx~ By 
EQUILIBRIUM a y 

r(111). CT(\11) 

B.=By 

'!f(S,l) 

Fig. 2.2b Flow diagram of the up-down asymmetric equilibrium 

C. THE CONFORMAL MAPPING [3) 

The aim of the mapping is to transform a specified but arbitrary shape of the plasma 

boundary into a circle and to map the magnetic axis onto the origin of the computational plane. 

In order to preserve the Laplacian of the left-hand side of Eq. (2.9) this mapping must be 

conformal so that the mapping function is an analytical function. Here we describe the mapping 

for an arbitrary non up-down symmetric plasma shape. 
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A possible choice of the function that maps the physical z-plane onto the computational w 

plane is given by: 

M 

z = L <Pm Wm = L <Pm Sm eimt. (2.17) 
m=O 

Let the plasma boundary in the z-plane be represented by za = f(0)ei0. In thew-plane the 

plasma boundary is then represented by a circle of radius s = 1. On the boundary, Eq. (2.17) 

becomes 

(2.18) 

If the relation 0(t) is known on the boundary, the coefficients <l>m of the mapping will be the 

Fourier components of f(0(t))eiO(t)_ Therefore, the mapping problem will be solved if the 

boundary correspondence function 0(t) is known. 

A relation between 0 and t is obtained from the function 

h(w) = In z(w) w . 

On the plasma boundary this becomes 

h(ei1) = In (f(S~~iO(t)) = In f(0(t)) + i (0(t) - t) . 

(2.19) 

(2.20) 

Expressing the boundary values of the real and imaginary parts of the analytic function h(w) by 

means of the Fourier series 

M 
Re (h(t)) = L ( am cos mt + bm sin mt) , 

m=O 

M 

Im (h(t)) = L ( - bm cos mt + am sin mt) , 
m=O 

the following iteration scheme is obtained for the boundary correspondence function 0(t): 

a? In {f(0~)} 
FFT 

~.bm -7 -7 
I 

i .i 

(0?+1 - tj) 
FFT-1 

-bm,~ f-
I 

(2.21) 

(2.22) 

where 0i = 0(tj). If the plasma shape is up-down symmetric, the coefficients <l>m in eq.(2.17) 

become real and the coefficients bm are zero. It is to be noted that the relations (2.21) can also 

be expressed in the form of an integral equation which is known as the Theodorsen equation. 
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Once the boundary correspondence function 0(t) is known, the coefficients 4>m of the 

mapping function are easily calculated. 

D. AN ANALYTIC TEST CASE 

In the previous paragraphs the method of solution of the Grad-Shafranov equation was 

given. It was explained how both the conformal mapping and the equilibrium problem can be 

solved by means of Fourier transformations. Combined with the use of a computational grid 

with the origin on the magnetic axis, the resulting algorithms are fast and accurate through the 

use of the fast Fourier transform. In this section some examples and tests of the convergence 

rate and of the accuracy of the equilibrium are given. 

To test the accuracy of the general non up-down symmetric equilibrium, we compare the 

results ofHBTAS with an analytical non up-down symmetric equilibrium. To that end we have 

generalized the well-known Soloviev equilibrium [ 4] by adding asymmetric terms: 

1 2 1--E ( 1))2 
+ 4 [(l+ Ex)2 -'t] y- y , (2.23) 

1-'t b c 

where£ is the inverse aspect ratio, -{bi; is the ellipticity, (b--c)/-{bi; is a measure of the up-down 

asymmetry, and 't measures the triangularity. The parameter By represents the freedom of a rigid 

shift in the vertical direction, which may be transformed away by the choice of the coordinates. 

Two examples of the flux contours of a non up-down symmetric Soloviev equilibrium are 

shown in Figs. 2.3. 

2.00 ,..,.---~--~ 2.00 ,..,.---~--~ 

.2.00 ~.'h1.oo,.--nio.~1;;---~1-k.oo-' ·2.00 '-+,;~-;ck--~..b-.1 
.1.00 o.~ 1. 

Fig. 2.3 Flux contours of two asymmelric Soloviev equilibria , ellipticity = 1.0 and 1.8 
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The error in the numerical solution of the Soloviev equilibrium by HBT is defined by 

(2.24) 

In Fig. 2.4a the relative error is shown as a function of the number of radial grid points (IINT) 

for the two examples of Fig. 2.3. From this figure it is clear that with the same number of radial 

grid points and Fourier harmonics, the near circular equilibrium has a higher accuracy than the 

equilibrium with a large ellipticity. This is an obvious consequence of the fact that near circular 

equilibria can be represented with fewer harmonics after conformal mapping than elliptical 

equilibria. However, by increasing both the number of radial grid points and the number of 

Fourier harmonics, an arbitrarily accurate result can be obtained. This is again illustrated in Fig. 

2.4b, where the relative error is shown as a function of the number of harmonics for the two 

cases. 

An example of the convergence rate of the general non up-down symmetric case is shown 

in Fig. 2.Sa. Here we have plotted the difference in the flux at all grid points between two 

consecutive equilibrium iterations as a function of the number of iterations. At the points where 

the difference increases, a new value for the position of the magnetic axis is calculated and the 

mapping is recalculated. This small increase shows that little accuracy of the solution is lost 

when the position of the magnetic axis is updated. Also plotted in Fig. 2.Sb is the difference in 

the two values of B. 

Thus also in the case of up-down asymmetric equilibria, by recalculating the conformal 

mapping with the origin of the coordinate system on the magnetic axis during the equilibrium 

iteration, an accurate equilibrium solution can be obtained. 
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10 -2 

Mharm=20, ellipt 

10-3 tJ Mharm= 12, ellipt 

• Mharm=20, circ 

~ 

10 -4 0 
~ 

* Mharm= 12, circ 

~ 

Cl> 

__: 
10 -5 Cl> 

~ 

10 -6 

10-7 

0 16 32 48 64 

llNT 

Fig. 2.4a The relative error of the equilibrium compared to a Soloviev equilibrium for a circular (black 

dots) and an elliptical case (while dots) as a function of Lhe number of radial gridpoints. Mharm 

is the number of fourier harmonics. 

10-2 

10-3 ~ 

circ. 
ellipt. 

~ 

0 10-4 
~ 
~ 

Cl> 

a; 10-5 
~ 

10 -5 

10-7 

0 10 20 30 

Mharm 

Fig. 2.4b The relative error in the equilibrium as a function of the number of fourier harmonics 
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10"0Lo~o~~~~~1~0~0~~~~~~2~.o~o,--~~~~"3~.o~o~~~~~,4r.oo 
. . NUMBER OF ITERATIONS XIO 

Fig. 2.5a The error in the equilibrium iteration as a function of the number of iterations for an elliptical 

plasma shape (K = 1.8) 

101 

10' 

a: 1 o-3 
0 
a: 
a: 
w 10-4 

10•.""'~~~~---..,~,--~~~~-,,-~~~~~~~~~~~~--,-!. 
0.00 1.00 2.00 3.00 4.00 

NUMBER OF ITERATIONS XIO 

Fig. 2.5b The difference in the two eigenvalues B, and B, at each iteration 
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III. ST ABILITY 

A. LOW-N STABILITY 

The low-n global stability ~nalysis in HBT exploits the high-~ tokamak ordering, which 

leads to a description in terms of one scalar unknown, viz. the stream function S(s,t). This 

quantity is represented in terms of global radial expansion functions and Fourier harmonics in 

the poloidal angle. The techniques used have been extensively described in Ref. [5], which 

dealt with the extension HIBAT of HBT. Since there is no point in reproducing all expressions 

here, the reader is refered to that paper for technical details on this part of HBT. 

B . BALLOONING ST ABILITY 

1 . General equations 

In the limit of highly localized modes, i.e. large toroidal mode numbers and large 

perpendicular wave vector, the contributions of the plasma compression and of the parallel 

current density to the change oW of the potential energy of the perturbations tend to zero. As a 

result, in the remaining part of oW the flux only appears as an implicit parameter so that oW 

only depends on the poloidal angle. Thus by taking the limit, the problem of minimizing ow is 
reduced from a two dimensional problem with the flux and the poloidal angle as variables, to a 

one dimensional problem for each flux surface involving the poloidal angle only. The remaining 

terms in the potential energy are the stabilizing term of the field line bending and the 

destabilizing term of the pressure gradient [6]. 

Then, oW can be written as : 

00 

J .? [ ( k~ ) ( 1 ax)2 2RBP ~ ( kn) 2) oW('lf) = dt K'i J 2 + 1 18 -,,::-t - 2 Kn - Kqz- x , (3.1) 
~ ITT B ~ t 

-oo 

where 
t 

k = nRB f 1-(~) dt' 
n P a R 

lo 'V 
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are the two components of the perpendicular wave vector. Here, J is the Jacobian, B is the 

total magnetic field with BP and B$ as poloidal and toroidal components, Kn and Kt represent 

the normal and tangential curvature components, and to is a free parameter to be discussed later. 

Eq. (3.1) has been derived by means of the so called ballooning transformation [7] which 

circumvents problems with the poloidal periodicity of the eigenfunction. This is done by 

replacing the analysis of periodic eigenfunctions over the domain 0 < t < 27t by a summation 

over quasi eigenfunctions which are non-periodic and extend over the domain -oo < t < oo. 

Minimizing W(ljf) leads to a standard Sturm-Liouville equation: 

(PX')' + (Q - co2 R) X = 0, 

where 

p = (~+ ~) ~' 
JB 

(3.2) 

R = pJ p. 

The value of the parameter to is determined by the next order in the n-112 expansion of oW. This 

yields the condition that the energy minimum must be minimized with respect to to : 

0' (3.3) 

or, equivalently, the growth rate resulting from the Sturm-Liouville equation must have a 

minimum at the appropriate value of to. 

The asymptotic form of the ballooning equation (3.2) for large t, after averaging over the 

periodic behavior of the equilibrium quantities, can be written as : 

(3.4) 

where DM is the coefficient of the well known Mercier criterion [8]. The latter criterion states 

that DM must be smaller than i for stability with respect to interchanges. This criterion also 

determines the asymptotic behavior of X at large t. For DM < i , proper behavior of X is 

obtained: X-c1t2 -:V 1t4 - 0 M. However, for DM > i the eigenfunctions are oscillatory and 

infinitely many negative eigenvalues co2 exist [9]. Thus, the Mercier criterion is a necessary 

condition for ballooning stability. 

2. Numerical solution; the Suydam method 

In the majority of cases where ballooning mode stability is calculated, one is only 

interested in the sign of the energy minimum: stable or unstable. A possible method to 

determine the sign of oW is the Suydam method which has been implemented in HBT. This 

method is based on a simple finite difference approximation of oW and was originally 
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developed by Suydam to calculate the marginal stability of an axisymmetric cylindrical plasma 

column [10]. The method provides a fast and easily implemented way to determine the 

ballooning stability. 

For convenience we write the potential energy as : 

00 

(3.5) 
-oo 

Approximating this expression with centered finite differences and truncating the integration 

interval at some large t, oW can be written as 

n 

ow = L Ai.J X(tj) X(tj) , (3.6) 
-n 

with 

A A Pi+l/2 ti.t Q 
i,i+l = i+l,i = - i\t + 4 i+l/2 , 

A;j = 0 for all other i, j combinations . 

By rearrangement of terms, the expression for OW can be simplified to 

n 

ow = I a; Y 2(t;) , no=Aoo. (3.7) 
-n 

It is clear from Eq. (3. 7) that the determination of the sign of the minimum of ow reduces to the 

calculation of the sign of the CXj coefficients. This procedure is quite fast and works with a large 

mesh size ti.t, even when the eigenfunction has a singular point inside the interval[ .. ]. 

In [ 11] it was shown that the position lj where the coefficient ai becomes negative is of 

the order of the halfwidth of the eigenfunction, i.e. a; < 0 occurs before the slowly decaying 

part of the eigenfunction. This greatly reduces the angular domain over which the coefficients 

have to be evaluated. Also, there is a clear correlation between the value oft; where ai = 0 and 

the growth rate of the eigenmode. Thus, considering a finite domain in t is equivalent with 

neglecting modes with very small growth rates. 

To calculate the growth rates and eigenfunctions, the ballooning equation (3.2) must be 

solved. Since this is a standard Sturm-Liouville equation without singular points, it can be 

solved by a shooting method. The shooting method that is implemented in HBT discussed is 

[12]. 
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IV. DESCRIPTION OF THE CODE 

The HBT code is divided into four modules, CONFIG, EQUIL, STAB, and BALON 

(Fig. 4.1), corresponding to the conformal mapping, the equilibrium iteration, the low-n 

stability, and the ballooning stability calculation, as described in the previous section. The input 

variables for each module are all specified in three NAMELISTs, one for the geometrical and 

physical quantities, NAMELIST/V ARn/, one for the print switches, NAMELIST/PRin/, and one for 

HBT 

CONFIG boundary correspondence 

0(t) - t =JC ( In f(0(t)) I 

EQUIL Grad-Shafranov eq. 

ti.*1!,I = F(1!,f,x,y) 

STAB variational principle 

co2 = W(S) I K(S) 

BALON ballooning eq. 

(PX')' - QX = 0 

Fig. 4.1 Structure of the code 
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the plot switches, NAMELIST/PLOn/, where n is the number of the module (n = 1: CONFIG; 

n = 2: EQUIL, n = 3: STAB; n = 4: BALON). Default values are provided for all input 

quantities. An overview of the meaning of all the input variables and control switches is given 

in Appendix A of this report, which reproduces the extensive comment section of the code. The 

meaning of the main output quantities is explained in Appendix D. The execution of any module 

of the code can be skipped by making MODEn = 0 in the corresponding namelist V ARn. 

The shape of the plasma cross-section and the pressure and diamagnetic functions are 

specified through input parameters in NAMELIST/V AR 1/. The shape of the plasma boundary can 

be specified through the coefficients of the parametric form (this option is selected with the 

namelist variable !CROSS = 1) : 

x = cos (0 + C sin 0 + D sin 20) 

and 

y = ~sin (0 + E cos 0 + F cos 20), (4.1) 

where x and y are the cartesian coordinates centered at the geometric center and normalized to 

the half-width of the plasma cross-section. The coefficients are given by the input parameters: 

PAR! = b/a, PAR2 = C, PAR3 = D, PAR4 = E, PAR5 = F, respectively. In HBT proper, which 

deals with up-down symmetric equilibria, the coefficients E and F are zero. In the up-down 

asymmetric version HBTAS, the plasma shape can be given by either specifying the 

coefficients E and F or by means of B-spline coefficients of the radius as a function of the 

poloidal angle (see appendix G). 

There is an option in the code to run Soloviev equilibria for parametric studies and for 

comparison of results with other codes. In this case, one has to choose !CROSS = 2 in 

NAMELIST/VARl/ and the Soloviev exact solution of the Grad-Shafranov equation will be 

obtained. The code then overwrites the free functions r('lf) and Il('lf) with 1 and automatically 

fixes the shape of the plasma cross-section to correspond to the 'I' = 1 flux surface of the 

Soloviev equilibrium. If one chooses !CROSS = 3, the same plasma cross-section will be used, 

but the code does not overwrite r('lf) and Il('lf}, so that a new class of equilibria is obtained 

which may be used to investigate classes of equilibria close to the Soloviev equilibrium (e.g., to 

find out about the effect of shear). 

The profile functions r('lf) and Il('lf) of Eq. (2.7) are specified in a normalized form as 

profiles of unit amplitude on the unit interval 0 ~'I'~ 1, where the normalized flux function 'If 

is chosen to have the values 0 at the magnetic axis and 1 at the plasma boundary, respectively. 

The relationship between the normalized profiles and the toroidal current density j~ is obtained 

from the expressions (2.4) and (2.6) of Sec. IIA: 
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j - EBo ~ [r(\j/) + Bx(l +-21 Ex) TI(\j/)]' 
~ - ~aa l+Ex 

(4.2) 

where A and B are the eigenvalues of the equilibrium problem and a is the poloidal flux 

between the plasma boundary and the magnetic axis, as discussed in Sec. IIA. The function 

TI(\j/) is the normalized pressure gradient and r(\j/) is the gradient of the normalized diamagnetic 

decrement. In the current version of the code, the profile functions can be specified in six 

different forms, depending on the values of the profile switches IP AI and IGAM, as shown in 

Table I. 

IGAM 

1 

2 

3 

4 

5 

6 

Table I. 

Unit Profiles 

y(\j/) !PAI 1t(\j/) 

( 1 +ay'V +brw2 +crv +dy'V4) er , 1 o +a,,w+b"w2+c"v+<1,,w4)<1i, 

where 1 +ay+b1+c1+<ly = 0 where 1 +a,,+b"+c"+d,, = 0 

c1-w)O +ayw+b1w2+c1v+dyw
4
+eyvl 2 (1-\j/)(l +a,,w+bnw2+c"V +d,,w4+enV) 

c1-rr)(1+ayw) + b1cwo-w)2J 3 c1-r")(l+a,,w) + b"CwO-w)2J 

dye 1 +ayw+brw2 +cyV 4 [1 +a,,w+b"w2+cnV 

- (1 +ay+by+Cy)w4Je'Y + (1-<ly )1t(\j/) - (1 +a,,+bn+Cn)w4le" 

B-spline coefficients of the 5 B-spline coefficients of the pressure 

diamagnetic profile (see Appendix G) profile (see Appendix G) 

not in use 6 B-spline coefficients of the 

pressure gradient profile (Appendix G) 

r('V) = r 1 + c1-r1) Y<'V); y(O) = 1, y(l) = o; 
TI(\j/) = TI1 + (1-TI1) it(\j/); it(O) = 1, it(l) = 0 

(r 1 and TI 1 allow for finite current density or pressure gradient at the plasma boundary). 

The major equilibrium quantities are specified in NAMELIST/V AR.2/. The inverse aspect 

ratio E, the shift of the magnetic axis with respect to the geometric center of the plasma cross­

section normalized to the minor radius B, and the "cylindrical safety factor" q*, can be varied 
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from EPS 1 to EPS2, DEL 1 to DEL2, and QS 1 to QS2 in NEPS, NOEL, and NQS values, 

respectively. The parameter q* is a measure of the total toroidal current 1$, and is defined by : 

• aLB0 q = , (4.3) 
µoRol$ 

where a is the minor radius, Lis the poloidal circumference of the plasma boundary, B0 is the 

vacuum magnetic field at the geometric plasma center, and Ro is the major radius. The 

possibility of running HBT in the exact or in the high-~ tokamak mode imposes some 

constraints on the choice of the parameters, as described in the sequel. 

After convergence of the equilibrium calculation , the values of e~P (EBETPL), <B> 

(BET AA), q0 (QO), q1 (Ql), and a (ALFA) are printed out, where q0 and q1 are the values of the 

safety factor at the magnetic axis and at the plasma boundary, respectively. The quantity a 
(defined above Eq. (2.3)) is related to q*. The profiles of the flux function 'I' (PSI), the flux 

contours in the physical z-plane, and the profiles of the pressure (P), the toroidal current density 

jq, (ITOR), the poloidal field Bp (BPOL), the toroidal field B$ (BTOR), and the safety factor q may 

be plotted by activating the switches L22 to L29 in NAMELIST/PL02/. 

The relevant quantities for the global stability analysis are specified in NAMELIST/V AR3/. 

Here, one has to keep in mind that the module ST AB is based on the high-~ ordering for which 

neither e nor q* explicitly appear in the normalized equilibrium equation [l,13, 14]. In this 

case, it can be shown that the magnetohydrodynamic energy functional can be written in the 

form OW= OW(O) + nq*. ow<!)+ (nq*f ow<2>, where ow<0>, ow<!), and ow<2> do not depend 

one and q* [14,15]. Thus, varying e is meaningless in the high-~ ordering, and in the stability 

analysis q* appears as a measure of both the toroidal current and the poloidal mode number 

because m - nq*. To bring out the different roles played by q*, it is indicated by QS in the 

equilibrium part and by QSTAR in the global stability part. The scanning range of QSTAR is 

specified by QSTARl and QSTAR2 with NQSTAR values. 

The module STAB can also be run using the a-stability concept [16], that is, a lower cut­

off value a for the square of the growth rate of the mode is specified a priori. Both a and the 

square of the frequency of the mode, ro2, are normalized to the square of the poloidal Alfven 

frequency, ro! = e2B~(~pa2a2), where p is the mass density of the plasma. In the output, the 

NEV lowest eigenvalues OMSQ = ro2tro! are printed for each value of QST AR, where NEV is an 

input parameter. Furthermore, marginal values of QSTAR for stability can be calculated by 

choosing LMARG = 1. The eigenvalues and the related flow fields can be plotted by activating 

the switches L32 to L34 in NAMELIST/PL03/. 

The effect of a conductive wall on the stability of the global model can be simulated by 

imposing a circular wall concentric with the plasma boundary in the transformed computational 
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plane. The radius of the wall normalized to the plasma radius (in the transformed plane) is 

specified by the parameter WALL. 

The input parameters to run the ballooning module are specified in NAMELIST/V AR4/. The 

easiest way to run BALON is to simply check the ballooning stability on each of the NPSI flux 

surfaces from PSil to PSI2. In this case, the fast finite-difference method described in section 

3B, is employed. For each value of the flux function PSI, the values of all relevant flux­

averaged quantities, including the shear parameter (SHEAR), s = 2(\jl/q)(dq/d\jf), and the 

pressure gradient parameter (GPAR), a= -4 ~(q*2/eB~) ../'I' (dp/d\jl) , are printed, together 

with the value of the Mercier parameter DM (DM < 1/4 for stability) and a message concerning 

the ballooning stability. 

If the surface is found to be unstable, the value of the extended poloidal variable for 

which the energy functional becomes negative is printed out; otherwise only the message 

'BALLOONING STABLE' is written. The ballooning equation (3.2) can also be solved directly by 

a shooting routine calculating the growth rate by activating the switch NSHOOT. In this case, the 

data for the shooting routine is written on a temporary file, DABAL, which has to be allocated 

beforehand (see Appendix E). The basic difference between the "exact" and high-~ tokamak 

versions of the ballooning equation is that the poloidal part is neglected in the expression for the 

normal curvature [11]. It turns out that the poloidal curvature term in the ballooning equation 

depends explicitly on q•. Thus, to allow for the possibility to verify the effect of the poloidal 

curvature on the ballooning stability, the scan in q• in the module BALON is made independent 

of the scan in the equilibrium part. For this reason, q* is re-labelled QST and a scan from QSTl 

to QST2 in NQST steps can be made. However, for JET discharges one is usually interested in 

evaluating the ballooning stability for actual equilibria, i.e., for specific values of e and q• given 

by IDENTC. In this case, QSTl, QST2, and NQST should be made equal to QSl, QS2, and NQS, 

respectively. 

A summary of the different options to run HBT is given in Table II. An example of a 

complete HBT run is given in Appendix F. Note that the input variables used in all NAMELIST's 

are explicitly written in the output file and can also be written on the front page of the plots by 

activating the switch Ll 1. 
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Table II. 

Options to run HBT 

exact equilibrium and high-~ equilibrium, 

ballooning stability global and ballooning stability 

/VAR2/ MODE2= 1 /VAR.2/ MODE2= 1 

EPSl = E1 EPSl = 0 

EPS2 = E2 EPS2 = 0 

NEPS ;to 0 NEPS = 0 

QSl = q\ QSl = 1.0 

QS2 = q*2 QS2 = 1.0 

NQS ;to 0 NQS=O 

/VAR3/ MODE3 =0 /VAR3/ MODE3= 1 

QSTARl = (nq*)1 

QSTAR2 = (nq*)i 

NQST;tO 

/VAR4/ MODE4= 1 /VAR4/ MODE4= 1 
• QSTl = q 1 QSTl = 1.0 
• QST2 = q 2 QST2 = 1.0 

NQST;tO NQST;t0 
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V. INTERFACING WITH EXPERIMENTAL JET DATA 

A. CONNECTION WITH IDENTC 

The easiest way of obtaining input data for HBT needed to reconstruct JET equilibria is to 

use IDENTC output. The shape of an up-down symmetric cross-section of the plasma is 

parametrized in IDENTC as : 

R = Rm + a cos (0 + y sin 0) , 
(5.1) 

z = Zm + Easin0, 

where Rm, Zm, a, E, and 1>1 are output parameters (see Table III). Comparing with the 

parametrization used in HBT given in Eq. (4.1) we notice that there is a one-to-one 

correspondence between the two codes for symmetric configurations (zm = 0), i.e., 

b/a = E, C = arcsin (lli) , D = 0. (5.2) 

IDENTC also gives the two values of the major radius where the last closed magnetic surface 

crosses the equatorial plane, RE and Rw, where Rw < RE, from which a and Ro follow: 

RE - Rw R RE+ Rw 
a= 2 ' o= 2 ' (5.3) 

while e = afRo. The equilibrium configuration is fully determined by these quantities. Note that 

the quadrangularity parameter D of HBT is not used in IDENTC. Although this parameter is 

actually vanishingly small for most shapes of the plasma cross-section, we find that in highly 

elongated JET X-point configurations the form of the last closed magnetic surface is better 

represented by considering D ,;,. 0. For up-down asymmetric plasma shapes, the plasma shape 

can be given in the form of B-spline coefficients where IDENTC provides the coordinates of 

the boundary curve Ri and Zi (see appendix G). It is to be noted that in the case of X-point 

plasmas the values given by IDENTC for the elongation and triangularity can be incorrect. In 

that case, both parameters may be obtained from a plot of the flux surfaces. 

The position of the magnetic axis can also be obtained from IDENTC. However, instead 

of using this data to specify the value of I) for HBT, we recommend to make a scan to obtain 

the correct value. This is so because the computation of the position of the magnetic axis in 

IDENTC is not accurate enough to match the HBT accuracy requirements. For fixed profiles 

and for a given form of the plasma cross-section, the value of ll is directly related to the value of 

the Shafranov beta, 
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A _ 8itS<p> 
Pl - 2 ' 

~IP 
(5.4) 

where S is the area of the plasma cross-section and <p> is the average pressure. The correct 

value of ll is then the one which gives the same value for ~I in HBT and IDENTC (or E~I = 

EBE1PL in HBT) for a given value of q*. To calculate the value of q* (Eq. (4.2)), the values of 

Ip. B0 , and 2itae (length of the circumference of the plasma cross-section) can also be directly 

obtained from the IDENTC output. 

The connection between the profile parameters of both codes follows from the 

expressions for the toroidal current density. In its standard version, IDENTC uses 

. A. R l\ Ro A 
Jct> = - [bi R A('lf) + (1 - bi) R H('lf)] ' 

µo o 
with the two profiles 

,a_('lf) = (1- 'lf) + a1(1 - 'lf)2 , 

Jl('lf) = (1 - 'lf) + b1 (1 - '!')2 
• 

(5.5) 

(5.6) 

(5.7) 

Comparing with the expression for jct> used in HBT, Eq. (4.2), it follows that the proper choice 

of the profiles (Table I) is given by IGAM = !PAI = 1, r I = Il I= 0, and 

1 + 2a1 
b" = 

a1 
(5.8) a" = - 1 + a1 ' 1 +a ' I 

a., = -
1+ 2b 1 + 2bi(a1- b1). 

by = 
b 1+bi(a1-b1) 

(5.9) 
1 + b I+ bi (a1 - b1) ' 1 + b 1 +bi (a1 - b1) 

The constants A and B (Eq. (2.7)), which are calculated as eigenvalues of the equilibrium 

problem in HBT, are directly related to the profile parameters of IDENTC, i.e., 

A a1 
- =-[l+b1 +bi(a1-b1)], 
a eB0 

bi (1 + a1) 
B=2E--~-~--

1 + b I+ bi (a1 - b1) 

(5.10) 

Recently, IDENTC has been modified to allow for the specification of experimental pressure 

profiles. In this case the function Il('lf) has to be chosen to fit the experimental profile on the '!'­
grid, as discussed in the next section. 

A summary of the connection between IDENTC and HBT parameters is given in Table 

III. 
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Table III. 

Connection between IDENTC and HBT parameters 

Input parameters 

IDENTC NDBPLOT (output) HBT (input) NAMELIST 

E IDC-ELONG (Eq. (5.1)) PARl (Eq. (4.1)) VARI 

31 IDC-TRIAN (Eq. (5.1)) PAR2 = arcsin (oi) VARI 

- - PAR3 =0 VARI 

a1 JDC-Al (Eq. (5.6)) AP!, BPI (Eq. (5.8)) VARI 

b1 JDC-Bl (Eq. (5.7)) AGA, BGA (Eq. (5.9)) VARI 

bi IDC-BTAN (Eq. (5.5)) CPI = DP! = 0 ; EPI = 1.0 VARI 

CGA = DGA = 0 ; EGA = 1.0 VARI 

PAil = GAMl = 0 VARI 

JGAM =!PAI= 1 VARI 

RE IDC-REAST (Eq. (5.3)) EPSl = (RE-Rw)/(RE+Rw) VAR2 

Rw IDC-RWEST 

- DELI, DEL2 (scan) VAR2 

Ip IDC-IPLASMA QSl (Eq. (4.3)) VAR2 

BT IDC-BTORO 

2itae !DC-CONTOUR 

Output parameters 

IDENTC NDBPLOT (output) HBT (output) 

~2 IDC-BETAAVER EBETPL=E~J 

2it<l>0, 2it<l>1 IDC-PSIAXJS, PSJBOUND ALFA (Eq. (2.3)) 

qo. q1 IDC-QAXIS, QBOUND Qo •QI 

B (Eq. (5.10)) 

To check the agreement between the equilibria calculated by the two codes, it is useful to 

compare the values of a (<1>0 and <1>1 are given by IDENTC), q0, q1, and B calculated by HBT 

with those that follow from the IDENTC output. Unfortunately, the value of A given by Eq. 
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(5.10) cannot be directly checked, because the parameter A, is usually not provided in the 

IDENTC output. However, A, is related to a and it suffices to get the correct value for this 

parameter. In comparing the results of HBT with IDENTC, one should note that the value of q0 

is not always accurately calculated in IDENTC. Therefore, is is better to first make sure that the 

global parameters <X, q•, and ~I are in good agreement. Furthermore, when there is uncertainty 

about the pressure profile of IDENTC, it is advisable to check the value of ~I against the MHD 

(MG2.BTI) and diamagnetic (MG2.BET) values provided in the PPF. 

Appendix F gives an example of a HBT run using IDENTC data. 

B. INPUT OF EXPERIMENT AL EQUILIBRIUM PROFILES 

For some situations of practical interest, viz., pellet fuelled discharges with strong 

additional heating, the pressure profiles strongly deviate from the usual Gaussian shape. These 

highly peaked profiles are rather poorly represented by the polynomial expressions used in the 

standard version of IDENTC. For this reason, IDENTC has recently been modified to allow for 

the specification of the pressure profile as a set of values at discrete values of the major radius. 

These 'experimental' pressure profiles can be constructed from the LIDAR diagnostic for the 

electron density and the temperature profiles (or, with a far better time resolution, from the 

electron cyclotron emission for the temperature and from the laser interferometer for the electron 

density). The ion temperature profile can be obtained from the charge exchange diagnostic. In 

some cases, the q profile can be derived from the mode activity on the soft x-ray measurements. 

Also, equilibrium profiles resulting from transport codes like TRANSP or ESCO are usually 

not available in a simple polynomial expression. Hence, input of profiles which are given in a 

pointwise fashion is desirable. 

To facilitate the input of such arbitrary pressure and diamagnetic profiles, HBT has been 

extended with the possibility to read the profiles from a file containing the coefficients of a B­

spline interpolation of the experimental profiles. A separate program SPLINE is then used to 

create the input files for HBT. A detailed description of the use of spline input is given in 

appendix G. 
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APPENDIX A: 

DESCRIPTION OF HBT AND MEANING OF THE INPUT VARIABLES 

HBT contains a fairly extensive in-code documentation of the overall structure of the 

program and of the meaning of the different NAMELIST input parameters. The relevant parts of 

the code are reproduced here for the convenience of the user. The lines have been numbered 

using the UPDATE convention which facilitates an easy referencing and discussion of 

modifications. The Jines HBT.13 - 85 contain notes on the four different modules, HBT.277 -

328 gives the NAMELIST input parameters and those default values that are not specified in the 

BLOCK DATA subprogram (discussed in Appendix C), whereas HBT.320 - 852 provides a 

complete description of the meaning of all the input parameters. 

The declarations of COMMON blocks have been omitted here since this would not interest 

the general user. The expert user, however, will notice that the Jines HBT.88 - 92 contain the 

PARAMETER statements determining the maximum sizes of the different arrays used in the 

computation. The sizes given here represent a conservative use of HBT, restricting the use of 

central memory as much as possible. Extending the memory for improved resolution may be 

done by changing the PARAMETER declarations of JMAXO, etc. and adapting NCOM5, NCOM6, 

and NCOM7 to values consistent with the expressions found in the respective COMMON blocks. 

Needless to say: this should be done with care. 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PRCGRAM HBT 
IMPLICIT REAL*8 (A-H) / REAL*8 (0-Z) 

HBT 
HBT 
HBT 

****************************************************************** HBT 
* EQUILIBRIUM AND STABILITY OF A DIFFUSE HIGH-BETA TOKAMAK * HBT 
* ADDITIONAL FORTRAN LIBRARIES NEEDED: HGOLIB, PPPLIB. * HBT 
****************************************************************** HBT 

* PRESENT VERSION OF THE PROGRAM: 
CHARACTER VERSION*(*) 
PARAMETER(VERSION~' 45') 

HBT 
HBT 
HBT 
HBT 
HBT 

****************** GENERAL COMMENTS ****************************** HBT 
* *Hfil 
* 1. IN PARTl (THE MODULE CONFIG) THE BASIC CONFIGURATION IS SET,* HBT 
* I.E., THE SHAPE OF THE PLASMA CROSS SECTION IS PRESCRIBED AND * HBT 
* THE TWO ARBITRARY EQUILIBRIUM FUNCTIONS ARE SPECIFIED. * HBT 
* BY MEANS OF A MOEBIUS TRANSFORMATION * HBT 
* Z(ZETA)=(DEL+ZETA)/(l+DEL*ZETA) * HBT 
* THE MAGNETIC AXIS IS MAPPED ONTO THE ORIGIN OF THE ZETA-PLANE. * HBT 
*BY MEANS OF AN ADDITIONAL NUMERICAL CONFORMAL MAPPING ZETA(W) * HBT 
* THE PLASMA REGION IS MAPPED ONTO THE UNIT DISK IN THE W-PLANE * HBT 
* WITH THE IMAGE OF THE MAGNETIC AXIS AT THE CENTER. * HBT 
* DEL IS THE SHIFT OF THE MAGNETIS AXIS IN THE PHYSICAL Z-PLANE. * HBT 
* THE COMPUTATIONS ARE PERFORMED IN THE W-PLANE WHERE THE POLAR * HBT 
* REPRESENTATION W=S*EXP(I*T) IS USED. * HBT 
*THE COMPUTATIONAL GRID IS GIVEN BY S(I), I=l, .. ,IINT, AND * HBT 

1 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
12 
13 
14 
15 
16 
17 
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19 
20 
21 
22 
23 
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25 
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* T(J), J=l, •• ,JPTS, 
*FOURIER HARMONICS IN THE ANGLE TARE LABELLED BY M=l, .. ,MHARM. 
* THE TWO ARBITRARY EQUILIBRIUM FUNCTIONS ARE DERIVED FROM THE 
* NORMALIZED UNIT PROFILES GAM(PSI) AND PAI{PSI): 
* GAM=GAMl+{l-GAMl)*SMLGAM(PSI), 
* PAI=PAil+(l-PAil)*SMLPAI(PSI), 
* WHERE SMLGAM(O)=l, SMLGAM(l)=O, 
* SMLPAI(O)=l, SMLPAI(l)=O, 
* THEY ARE RELATED TO THE PROFILES G(PSI) AND P(PSI) BY 
* DG/DPSI=-A*GAM(PSI), 
* DP/DPSI=-.S*A*B*PAI(PSI), 
*WHERE THE DIAMAGNETISM QQ(PSI)=P-EPS*G AND THE PRESSURE P(PSI) 
* ARE THE USUAL FUNCTIONS ENTERING THE GRAD-SHAFRANOV EQUATION. 
* IN OUR FORMULATION, THE AMPLITUDES A AND B ARE EIGENVALUE 
* PARAMETERS THAT FOLLOW FROM THE REQUIREMENT THAT PSI=O AT THE 
* MAGNETIC AXIS AND PSI=l AT THE PLASMA SURFACE. 
* EPS IS THE INVERSE ASPECT RATIO. 

' * 2. IN PART2 (THE MODULE EQUIL) THE EQUILIBRIUM IS DETERMINED 
* FOR BOTH THE HIGH-BETA TOKAMAK APPROXIMATION (INDEPENDENT OF 
* EPS AND THE NORMALIZED CURRENT PARAMETER QS) AND FOR THE GENE­
* RAL CASE WHERE BOTH EPS AND QS ENTER. 
* THE EQUILIBRIUM IS ITERATED UNTIL THE MEAN SQUARE ERROR OF THE 
*VALUES OF PSI(I,J) AT SUBSEQUENT ITERATIONS IS SMALLER THAN 
* THE VALUE OF THE INPUT PARAMETER ERROR OR WHEN THE NUMBER IT 
* OF ITERATIONS EXCEEDS NIT. 

' * 3. IN PART3 (THE MODULE STAB) THE GLOBAL STABILITY IS ANALYZED 
* FOR THE HIGH-BETA TOKAMAK APPROXIMATION ONLY. HERE, THE PARA­
* METER QSTAR=QS (APPROXIMATELY) ENTERS INDEPENDENTLY TO LEADING 
* ORDER. THE STABILITY ANALYSIS IS PERFORMED FOR A WALL SITUATED 
* AT A CIRCLE S=WALL CONCENTRIC TO THE IMAGE OF THE PLASMA SUR­
* FACE IN THE W-PLANE. 
* STABILITY IS ANALYZED BY MEANS OF ANGULAR HARMONICS LABELED 
* M=Ml, .. , M2 AND RADIAL POLYNOMIALS N=O, , . 1 NN, 
* SO THAT THE ENERGY MATRIX W CONSISTS OF THE ELEMENTS 
* (M) *(N) I (MU)* (NU) = (Ml, •. ,M2) * (0, .. ,NN), (Ml, •• ,M2) *(O, .. ,NN). 
*THE EIGENVALUES OMSQ(NE) ARE LABELED WITH NE=l, .. ,NEV, WHERE 
' NEV.LE. (M2-Ml+l) 'CNN+l). 
* STABILITY IS DETERMINED BY THE LOWEST EIGENVALUE NE=l, 
* THE CONFIGURATION IS TERMED SIGMA-STABLE IF OMSQ(l) .GT.-SIGMA. 

' * IN SUBROUTINE ANASTA A FURTHER ANALYSIS OF THE GLOBAL STABI-
* LITY IS PERFORMED BY CALCULATING THE EIGENFUNCTIONS CORRESPON­
* DING TO THE LOWEST EIGENVALUES NE=l, .. ,NEF, WHERE NEF.LE.NEV. 

' 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* 4. IN PART4 (THE MODULE BALON) THE LCX::AL BALL<X>NING STABILITY * HBT 
* IS ANALYSED FOR EITHER THE HIGH-BETA TOKAMAK APPROXIMATION OR * HBT 
* FOR THE EXACT CASE, IN THE FIRST CASE STABILITY IS INDEPENDENT * HBT 
* OF QSTAR, IN THE LATTER CASE THE PARAMETER QST=QS (OF THE * HBT 
* EQUILIBRIUM PART) APPEARS. * HBT 
* CALCULATIONS IN THE BALLOONING PART ARE PERFORMED ON A NON- * HBT 
* ORTHOGONAL PSI-T GRID. * HBT 
* * HBT 
* IN SUBROUTINE SH<X>T AN ALTERNATIVE ANALYSIS OF THE LOCAL * HBT 
* BALLOONING STABILITY IS PERFORMED BY SHOOTING FOR THE EIGEN- * HBT 
* VALUES. * HBT 
****************************************************************** HBT 

* COMMON BLOCKS FOR COMPUTED VARIABLES: 
PARAMETER(JMAX0=512,MCMAX=255, 

A IMAX=100,JMAX=256,MMAX=63, 
B MlMIN=-6,M2MAX=l4,NNMAX=l2,ISTEP=2,JSTEP=2, 
C NPI.MAX=20,JMAX2=256,MMAX2=63, 
D NCOM5=149331,NCOM6=64608,NCOM7=80955) 

(COMMON statements omitted) 

HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 

2B 
29 
30 
31 
32 
33 
34 
35 
36 
37 
3B 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4B 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
6B 
69 
70 
71 
72 
73 
74 
75 
76 
77 
7B 
79 
BO 
Bl 
B2 
B3 
B4 
B5 
C6 
B7 
BB 
B9 
90 
91 
92 

* COMMON BLOCKS FOR NAMELIST INPUT VARIABLES; 
HBT 234 
HBT 235 

(COMMON statements omitted) 
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HBT 
* NAMELIST INPUT: HBT 
NAMELIST/VARl/RUN,NOTE,IO,IOD, HBT 

A GAMl,IGAM,AGA,BGA,CGA,DGA,EGA, HBT 
B PAil,IPAI,API,BPI,CPI,DPI,EPI, HBT 
C ICROSS,PAR1,PAR2,PAR3,JPTS0,MCM,ERRCM,NITCM,MODE1 HBT 

NAMELIST/PRI1/Nll,Nl2,Nl3,N14,Nl5,Nl6,Nl7,Nl8,Nl9, HBT 
A NlSA,NlSB,Nl5C,Nl5D,Nl5E,Nl5F,Nl5G,Nl5H,NlSI, HBT 
B Nl7A,Nl7B,Nl8A,Nl8B,Nl9A,Nl9B HBT 

NAMELIST/PL01/Lll,Ll2,Ll3,Ll4,Ll5,KRAD,LANG HBT 
NAMELIST/VAR2/EPS1,EPS2,NEPS,DEL1,DEL2,NDEL,QS1,QS2,NQS, HBT 

A IINT,JPTS,MHARM,ERROR,NIT, HBT 
B NPRE,IMIX,NMIX,AMIX,BMIX,MODE2 HBT 
NAMELIST/PRI2/N21,N22,N23,N24,N25,N26,N27,N28,N29,N210,N211,N212, HBT 

A N23A,N2JB,N24A,N24B,N24C,N24D,N24E,N24F,N24G, HBT 
B N25A,N25B,N26A,N26B,N26C,N2BA,N2BB,N28C, HBT 
C N210A,N210B,N211A,N211B, HBT 
D N212A,N212B,N212C,N212D,N212E,N212F,N212G HBT 
NAMELIST/PL02/L21,L22,L23,L24,L25,L26,L27,L28,L29, HBT 

A L21A,L21B,L21C,KCON HBT 
NAMELIST/VAR3/WALL,QSTAR1,QSTAR2,NQSTAR,Ml,M2,NN,LE,NEV, HBT 

A LMARG, SIGMA, NEF, NAP HI 1 MODE3 HBT 
NAMELIST/PRl3/N31,N32,N33,N34,N35,N36,N37,N38,N39,N310,N311,N312, HBT 

A N313,N31A,N31B,N31C,N31D,N31E,N31F,N31G,N31H, HBT 
B N31I,N31J,N31K,N31L,N31M,N31N,N310,N31P, HBT 
C N35A,N35B,N312A,N312B,N313A,N313B HBT 

NAMELIST/PL03/L31,L32,L33,L34,L35, HBT 
A L31A,L31B,L31C,L32A,L32B,L33A,L33B,NCON,AMP HBT 

NAMELIST/VAR4/NPOL,PSI1,PSI2,NPSl,QST1,QST2,NQST,T0,TBB,TBF,DBT, HBT 
A JPTS2, MHARM2 1 ERROR2, NDABAL, HBT 
B NSHCXJT,MOD01,MOD02,TX1,TX2,NTX,ALAM1,ALAM2,NLAM, HBT 
C XF,NX,ABSER2,MODE4 HBT 

NAMELIST/PRl4/N41,N42,N43,N44,N45,N46,N47,N48, HBT 
A N49,N410,N411,N412, HBT 
B N41A,N41B,N41C,N42A,N42B,N42C, HBT 
C N43A,N43B,N43C,N44A,N44B,N44C HBT 

NAMELISTIPL041L41 HBT 

DATA 
DATA 
DATA 
DATA 

A 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

MODEl/11 
NlO IOI 
LlO IOI 
EPS1,EPS2,DEL1,DEL2,QS1,QS2 

I o., o., .1 1 .1, 1., 1./ 
MODE2/ll 
N20 IOI 
L20 IOI 
MODE3IOI 
N30 IOI 
L30 101 
MODE4101 
N40 IOI 
L40 IOI 

HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 
HBT 

************** COMMENTS ON NAMELIST INPUT VARIABLES ************** HBT 

* * - NAMELIST/VARl/ FOR CONFIG: 
* RUN - IDENTIFICATION OF INPUT (CHARACTER VARIABLE) . 
* NOTE - COMMENT ON INPUT (CHARACTER VARIABLE) . 
* IO - UNIT NUMBER FOR THE FILE ON WHICH THE NORMAL 
* OUTPUT IS TO BE WRITTEN. 
* IOD - UNIT NUMBER FOR THE FILE ON WHICH THE EXTENSIVE 
* DIAGNOSTIC OUTPUT IS TO BE WRITTEN: 
* 20 ON FILE "OUTPUT"; 
* 21 ON SEPARATE FILE "OHBT". 
* GAMl - BOUNDARY VALUE OF THE PROFILE FUNCTION GAM. 
* IGAM - CLASS OF THE PROFILE FUNCTION GAM CONSIDERED. 
* AGA,BGA, - CONSTANTS OF THE PROFILE FUNCTION GAM. 
* CGA,DGA,EGA NOTICE: THERE MAY BE A RESTRICTION ON THE CHOICE 
* OF THE CONSTANTS, DEPENDING ON THE CLASS IGAM. 
* PAil - BOUNDARY VALUE OF THE PROFILE FUNCTION PAI. 
* !PAI - CLASS OF THE PROFILE FUNCTION PAI CONSIDERED. 
* API,BPI, - CONSTANTS OF THE PROFILE FUNCTION PAI. 
* CPI,DPI,EPI NOTICE: THERE MAY BE A RESTRICTION ON THE CHOICE 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
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* 
* !CROSS 

* 
* 
* 
* 
* 
* 
* 
* PARl 
* PAR2,PAR3 
* JPTSO 
* 
* 
* 
* MCM 
* 
* 
* ERRCM 
* 
* NITCM 
* MODEl = 0 

* 
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OF THE CONSTANTS, DEPENDING ON THE CLASS !PAI. * HBT 
- CLASS OF THE PLASMA CROSS-SECTION CONSIDERED: * HBT 

1 CROSS-SECTION DETERMINED BY SUBROUTINE SHAPE; * HBT 
2 CROSS-SECTION DETERMINED BY SUBROUTINE SOLO, I.E.* HBT 

USING SOLOVIEV EQUILIBRIUM WHERE THE PARAMETER * HBT 
DEL AND THE PROFILE FUNCTIONS ARE OVERWRITTEN; * HST 

3 CROSS-SECTION DETERMINED BY SUBROUTINE SOLO, BUT * HBT 
DEL AND THE PROFILES REMAIN FREE SO THAT THE * HBT 
EQUILIBRIUM IS NOT A PROPER SOLOVIEV ONE. * HBT 

- RELATIVE HEIGHT B/A OF THE PLASMA CROSS-SECTION. * HBT 
- FURTHER PARAMETERS OF THE PLASMA CROSS-SECTION, * HBT 
- NUMBER OF ANGULAR POINTS USED FOR REPRESENTING * HBT 

THE PLASMA CROSS-SECTION AND COMPUTING THE CON- * HBT 
FORMAL MAPP ING; 
SHOULD BE A POWER OF 2. 

- NUMBER OF HARMONICS USED FOR REPRESENTING THE 
PLASMA CROSS-SECTION AND THE CONFORMAL MAPPING; 
SHOULD NOT EXCEED JPTS0/2-1. 

- MEAN SQUARE ERROR OF THE CONFORMAL MAPPING COM­
PUTED BY LIBRARY SUBROUTINE MAPINl, 

- MAXIMUM NUMBER OF ITERATIONS FOR MAPINl. 
- TERMINATE EXECUTION PRCGRAM. 

* HBT 
* HBT 
* HBT 
* HBT 
* HST 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* - NAMELIST/VAR2/ FOR EQUIL: * HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* EPS1,EPS2 - RANGE OF INVERSE ASPECT RATIO EPS TO SCAN, 
* NEPS - NUMBER OF EPS VALUES. 
* DEL1,DEL2 - RANGE OF SHIFT DEL OF THE MAGNETIC AXIS TO SCAN. 
* NDEL - NUMBER OF DEL VALUES, 
* QS1,QS2 - RANGE OF CURRENT PARAMETER QS TO SCAN. 
* NQS - NUMBER OF QS VALUES, 
* !INT - NUMBER OF RADIAL INTERVALS S(I); 
* SHOULD BE EVEN, 
* JPTS - NUMBER OF ANGULAR POINTS T(J); 
* SHOULD BE A POWER OF 2. 
* MHARM - NUMBER OF FOURIER HARMONICS, LABELED BY M; 
* SHOULD NOT EXCEED JPTS/2-1. 
* ERROR - PRECISION BY WHICH THE EQUILIBRIUM ITERATION IS 
* PERFORMED, I.E., THE MEAN SQUARE ERROR (AMSQER) 
* OF PSI(I,J) WILL BE SMALLER THAN ERROR, 
*NIT - MAXIMUM NUMBER OF ITERATIONS FOR PSI(I,J). 
* NPRE - NUMBER OF STEPS IN DEL FOR PRE-ITERATION, 
* !MIX .NE. 0 - GENERALIZED MARDER-WEITZNER SCHEME FOR ITERATION 
* WHERE THE RESULTS OF THE LAST AND PREVIOUS TWO 
* STEPS OF THE ITERATION ARE MIXED. 
* NMIX - MIXING CX:::CURS FOR IT=IMIX+N*NMIX, N=l,2, .. 
* AMIX,BMIX - PARAMETERS OF THE MIXING SCHEME. 
* MODE2 = 0 - SKIP EXECUTION EQUIL. 
* 
* - NAMELIST/VAR3/ FOR STAB: 
* WALL - POSITION OF THE WALL IN THE W-PLANE. 
* QSTARl, - RANGE OF QSTAR TO SCAN FOR GLOBAL STABILITY. 
* QSTAR2 
* NQSTAR 
* 
* Ml, M2 
* O,NN 
* LE 
* 
* 
* 
* 
* 
* 
* NEV 
* * I.MARG 
* SIGMA 
* 
* NEF 
* * NAPHI 
* 
* MODE3 

1 

0 

0 

1 

2 

- NUMBER OF QSTAR VALUES; * HBT 
SHOULD NOT EXCEED 100. * HBT 

- RANGE OF ANGULAR HARMONICS FOR ENERGY MATRIX W, * HBT 
- RANGE OF RADIAL POLYNOMIALS FOR ENERGY MATRIX W. * HBT 
- CHOICE OF EIGENVALUE SUBROUTINE: * HBT 

EIGEN (CALLING SMEVEV) OF HGOLIB, * HBT 
GIVING EIGENVALUES + EIGENVECTORS; * HBT 
EIGENl (CALLING F01AGF,F02AVF OF NAG), * HBT 
GIVING EIGENVALUES ONLY; * HBT 
EIGEN2 (CALLING F01AJF,F02AMF OF NAG), * HBT 
GIVING EIGENVALUES + EIGENVECTORS, * HBT 

- NUMBER OF LOWEST EIGENVALUES TO BE PRINTED, * HBT 
LABELED BY NE. * HBT 
COMPUTE SIGMA-MARGINAL STABILITY VALUES OF QSTAR.* HBT 

- CUT-OFF FOR THE GROWTH RATE OMSQ(l) USED IN THE * HBT 
CRITERION FOR SIGMA-STABILITY: OMSQ(l) .GT.-SIGMA.* HBT 

- NUMBER OF EIGENFUNCTIONS COMPUTED, CORRESPONDING * HBT 
TO LOWEST EIGENVALUES LABELED BY NE, * HBT 

- NUMBER OF TOROIDAL ANGLES FOR WHICH SKSI AND * HBT 
SETA ARE COMPUTED. * HBT 
SKIP EXECUTION STAB. * HBT 
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' * - NAMELIST/VAR4/ FOR BALON: 
* NPOL - NUMBER OF POLYNOMIALS TO FIT EQUILIBRIUM DATA; 
* SHOULD NOT EXCEED IINT, 
* PSI1,PSI2 - RANGE OF PSI VALUES TO SCAN. 
* NPSI - NUMBER OF PSI VALUES, 
* QST1,QST2 - RANGE OF QST VALUES TO SCAN. 
* NQST - NUMBER OF QST VALUES. 
* TO - LOWER LIMIT OF THE SHEAR INTEGRAL IN THE 
* BALLOONING EQUATION, 
* TBB,TBF - RANGE OF THE EXTENDED POLOIDAL VARIABLE FOR THE 
* SUYDAM METHOD. 
* DBT - STEP SIZE FOR THE SUYDAM METHOD, 
* JPTS2 - NUMBER OF POLOIDAL SAMPLING POINTS (FOR FFT) TO 
* CALCULATE COEFFICIENTS OF BALLOONING EQUATION; 
* HAS TO BE A POWER OF 2. 
* MHARM2 - NUMBER OF HARMONICS TO BE CONSIDERED IN THE 
* BALLOONING EQUATION; 
* SHOULD NOT EXCEED JPTS2/2-l. 
* ERROR2 - ABSOLUTE ERROR TO CALCULATE THE VALUE OF S AT A 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* GIVEN PSI,T. * HBT 
* NDABAL l - WRITE DATA FOR SHOOTING CODE ON FILE "DABAL", * HBT 
* NSHOOT l BALLOONING STABILITY COMPUTED BY SHOOTING. * HBT 
* MODOl 0 - BALLOONING EQUATION IS REWRITTEN IN A FORM * HBT 
* EQUIVALENT TO THE SCHROEDINGER EQUATION BEFORE * HBT 
* INTEGRATING; * HBT 
* 1 BALLOONING EQUATION IS INTEGRATED IN THE ORIGINAL* HBT 
* FORM (THIS FORM IS RECOMMENDED) . * HBT 
* MOD02 0 - USES APPROXIMATE FORM OF THE POTENTIAL, WITH * HBT 
* Cl=CONST, FOR INTEGRATION, IN THIS CASE, THE * HBT 
* BALLOONING EQUATION BECOMES EXACTLY EQUIVALENT * HBT 
* TO SCHROEDINGERS EQUATION, * HBT 
* TX1,TX2 - RANGE OF TX WHERE "EQUIVALENT POTENTIAL" FOR THE * HBT 
* BALLOONING EQUATION IS TO BE PRINTED (IF N410=1) * HBT 
* BEFORE SHOOTING FOR DIFFERENT VALUES OF ALAM. * HBT 
* NTX - NUMBER OF TX VALUES. * HBT 
* ALAM1,ALAM2 - RANGE OF ALAM (NORMALIZED QROWTH RATE SQUARED). * HBT 
* NLAM - NUMBER OF ALAM VALUES. * HBT 
* O.,XF - RANGE OFT WHERE THE EIGENFUNCTION IS CALCULATED.* HST 
* NX - NUMBER OF STEPS IN T (EXCLUDING T=O.) * HBT 
* ABSER2 - ABSOLUTE ERROR FOR ODE. * HBT 
* MODE4 = 0 - SKIP EXECUTION BALON, * HST 
****************************************************************** HBT 

************* COMMENTS ON DIAGNOSTIC PRINT SWITCHES 
* (OPERATIONAL IF NI.NE.0) 

HBT 
************** HBT 

* HBT 

' * - NAMELIST/PRil/ FOR CONFIG (CALLS TO DIAGl): 
' Nll (CONFIG) - "CROSS-SECTION IN THE ORIGINAL Z-PLANE", FR (J) 
* Nl2 - FRFNUL,FRF(M) 
* Nl3 (CMAP) - "CROSS-SECTION IN THE MAPPED ZETA-PLANE", GR(J) 
* Nl4 - SIGRNL,SIGR(M) 
* Nl5 (MAPINl) - "BEGIN SUBROUTINE MAPINl" (OF LIBRARY HGOLIB) 
* NlSA - "GRID AND INITIALIZATION", THIN (J), ROIN (J) 
* NlSB - "ITERATION", IMAP 
' Nl5C - A(J) 
* NlSD - AFNUL,AF(M)=CF(M) 
* NlSE - C(J) 
* Nl5F - THIN(J),ROIN(J) (DURING ITERATION) 
* NlSG - "TEST CONVERGENCE:", TEST 
* NlSH - "END RESULT OF THE MAPPING:", TEST, 
* "BOUNDARY CORRESPONDENCE FUNCTIONS", 
* THIN(J) 
' Nl5I - ROIN(J) 
* NlS - "END SUBROUTINE MAPINl" (OF LIBRARY HGOLIB) 
* Nl6 (CMAP) - "HARMONICS OF THE CONFORMAL MAPPING ZETA(W) ", 
* PHINUL, PHI (M) 
* Nl 7 (GRIDAR) - "GRID IN THE Z-PLANE" 
* Nl7A - X(I,J) 
* Nl7B - Y(I,J) 
* NlB - "GRID IN THE ZETA-PLANE" 
* NlBA - KSI (I, J) 
* NlBB - ETA(I, J) 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
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* N19 
* Nl9A 
* N19B 

* 
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- "GRID IN THE W-PLANE" 
- U (I, J) 

- V(I,J) 

* - NAMELIST/PRI2/ FOR EQUIL (CALLS TO DIAG2): 
* N21 (INIT) "INITIALIZATION", A, PSI (I,J) 
* N22(ITERA) - "ITERATION",IT,"END ITERATION" 
* N23 (CALFF) - "INPUT ARRAYS FOR FFT" 
* N23A - FlNUL, Fl (I, J) 
* N23B - F2NUL,F2(I,J) 
* N24(CALPSI) - "FOURIER TRANSFORMED ARRAYS" 
* N24A - FlTRNL,FlTR(I,M) 
* N24B - F2TRNL,F2TR(I,M) 
* N24C - B 
* N24D - FFNUL,FF(I,M) 
* N24E - GFNUL, GF (I, M) 
* N24F - A 
* N24G - PSIFNL,PSIF(I,M) 
* N25 (!TERA) - "RESULT OF THIS STEP OF THE ITERATION" 
* N25A - PSI(I,J) 
* N25B - IT,ERROR,AMSQER,ABSER 
* N26 - "SOLUTION" (AFTER ITERATION) 
* N26A - FFNUL,FF(I,M) 
* N26B - GFNUL,GF(I,M) 
* N26C - PSIFNL,PSIF(I,M) 
* N27 - PSI(I,J) 
* N28 (PAREQ) - "PHYSICAL QUANTITIES" 
* N28A - BPOL(I,J) 
*N28B -P(I,J) 
* N28C - JTOR(I,J) 
* N29(PAREQS) - BTOR(I,J) 
* N210 (PSICON) - "FLUX CONTOURS IN THE Z-PLANE" 
* N210A - XX(K,J) 
* N210B - YY(K,J) 
* N2ll(SSQCON)- "S**2 CONTOURS IN THE Z-PLANE" 
* N211A - XSSQ(K,J) 
* N211B - YSSQ (K, J) 
* N212 (EQUAR) - "EQUILIBRIUM PROFILES" 
* N212A - XXX III 
* N212B - YPSI (I) 
* N212C - YP(I) 
* N212D - YJTOR(I) 
* N212E - YBPOL(I) 
* N212F - YQ(I) 
* N212G - YBTOR(I) 
* 
* - NAMELIST/PRI3/ FOR STAB (CALLS TO DIAG3A,DIAG3B,DIAG3C): 
* N31 (COEF) - "COEFFICIENTS ENTERING THE STABILITY", 
* UlF(I,M)-Ul0F(I,M),VlF(I,M)-V6F(I,M) 
* (DISTINGUISHED BY SWITCHES N31A-N31J,N31K-N31P) 
* N32 - UF(M) 
* N33 (POLYN) - "POLYNOMIALS", 
* X(I,M,N),Y(I,M,N),Z(I,M,N) 
* N34 - ANORM(MIND,N,NU) 
* N35 (WlW2) - "MATRICES Wl AND W2" 

(NO CALL TO DIAG3) 
(NO CALL TO DIAG3) 

* N35A - Wl(MIND,N,NU) FOR SINGLE MIND IF N35A=MIND; 
* FOR ALL MIND (!) IF N35A.GE.99 
* N35B - W2(MIND,N,NU) FOR SINGLE MIND IF N35B=MIND; 
* FOR ALL MIND (!) IF N35B,GE.99 
* N36(INDCS) - "CONNECTION BETWEEN INDICES IC AND N,M" 
* N37 (WEIGEN) - ("DO LOOP ON QSTAR", IQSTAR,) QSTAR, 
* W(IC,JC) 
* N38 (STAB) - "HARMONIC CONTENT", SIG (IC, NE) 
* N39(ANASTA) - ("DO LOOP ON NE",NE) 
* N310(EIFUN1)- ZETA(II,JJ) 
* N3ll(EIFUN2)- ("DO LOOP ON APHI",IAPHI,) APHI 
* N312 - "NORMAL AND TANGENTIAL DISPLACEMENTS" 
* N312A - SKSI(II,JJ) 
* N312B - SETA(II,JJ) 
* N313 (EIFUN3) - "HORIZONTAL AND VERTICAL FLOW COMPONENTS" 
* N313A - VX(II,JJ) 
* N313B - VY(II,JJ) 
* 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

496 
497 
498 
499 
500 
501 
502 
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508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
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527 
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545 
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567 
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c 
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c 
c 
c 
c 
c 
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* - NAMELIST/PRI4/ FOR BALON (CALLS TO DIAG4): 
* N41 (INTPLN) - "EQUILIBRIUM INPUT ARRAYS", 
* FF(I,M),GF(I,M),PSIF(I,M) 
* (DISTINGUISHED BY THE SWITCHES N41A,N41B,N41C) 
* N42 - "POLYNOMIAL COEFFICIENTS", 
* CF(IC,M),CG(IC,M),CPSI(IC,M) 
* (DISTINGUISHED BY THE SWITCHES N42A,N42B,N42C) 
* N43 (INTPLN, - "DIFFERENCE OF REEVALUATED AND INPUT ARRAYS", 
* CHECK) DFF(I,M) ,DGF(I,M) ,DPS! (I,M) 
* (DISTINGUISHED BY THE SWITCHES N43A,N43B,N43C) 
* N44 (CHECK) - "REEVALUATED ARRAYS", 
* FF(I,M),GF(I,M),PSIF(I,M) 
* (DISTINGUISHED BY THE SWITCHES N44A,N44B,N44C) 
* N45 (BALSTA) 

' * N46 

' 
* N47 
* N48(SUYDAM) 

' * N49 (SHOOT) 

' 
' * N410 

- "DO LOOP ON PSI",IPSI,PSI, 
CC(IJ, II) 

- (EPS, "DO LOOP ON QST", IQST, QST, ALPHA,) 
CA(IJ, III 

- CBL(IM,II),\!N 
- "SUYDAM PARAMETER NEGATIVE", 

I,NT,TN(NT),ALP,KP2,GP2,A01,All 
- INPUT DATA FROM FILE DABAL, I.E., 

"EQUILIBRIUM PARAMETERS", GAMl, IGAM, ETC. 
"BALLOONING PARAMETERS", PSI1,PSI2,ETC, 

- DATA RELATIVE TO EACH FLUX SURFACE FROM 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* FILE DABAL, VIZ., PSI,GPAR,QST,ETC. * HBT 
* N411 - CBL(IM,II) * HBT 
* N412 - "EQUIVALENT POTENTIAL",TX,VP,VPO,VP-VPO,Cl/ClO, * HBT 
* TMN,VPMN,TMX,VPMX,TOMN,VPOMN, * HBT 
* TOMX, VPOMX, TlMX, VlMAX (CALL TO POT) * HBT 
****************************************************************** HBT 

HBT 
*************** COMMENTS ON SWITCHES FOR PLOTTING 
* (OPERATIONAL IF NI.NE.0) 

' * - NAMELIST/PLOl/ FOR CONFIG: 

**************** HBT 
* HBT 
* HBT 
* HBT 

* Lll(HBT) - WRITE NAMELIST INPUT ON FIRST GRAPH. 
* Ll2(HBT) - WRITE CONCISE OUTPUT ON LAST GRAPH. 
* Ll3(GRIDAR) - PLOT GRID IN THE Z-PLANE. 
* L14 - PLOT GRID IN THE ZETA-PLANE. 
* Ll5 - PLOT GRID IN THE W-PLANE. 
* KRAD - NUMBER OF RADIAL GRID CURVES TO BE PLOTTED. 
* LANG - NUMBER OF ANGULAR GRID CURVES TO BE PLOTTED. 

' * - NAMELIST/PL02/ FOR EQUIL: 
* L21 (ITERA) - PLOT FF(I,M) ,GF(I,M) ,PSIF(I,M) 
* (DISTINGUISHED BY THE SWITCHES L21A,L21B,L21C). 
* PLOTS FOR SINGLE VALUES OF M WHEN L21A/B/C=M; 
' ALL M (!) PLOTTED IF L21A/B/C.GE.99. 
* L22(PSICON) - PLOT FLUX CONTOURS IN THE Z-PLANE. 
* L23(SSQCON) - PLOT S**2 CONTOURS IN THE Z-PLANE. 
* KCON - NUMBER OF CONTOURS TO BE PLOTTED. 
'L24(EQUAR) - PLOT PSI(X). 
' L25 - PLOT P(X). 
' L26 - PLOT JTOR(X). 
* L27 - PLOT BPOL(X). 
' L28 - PLOT Q(X). 
' L29 - PLOT BTOR(X). 

' * - NAMELIST/PL03/ FOR STAB: 
* L3l(STAB) - PLOT POLYNOMIALS X(I,M,N),Y(I,M,N),Z(I,M,N) 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* (DISTINGUISHED BY THE SWITCHES L31A,L31B,L31C). * HBT 
* PLOTS FOR SINGLE M=L31A/100, N=MOD (L31A, 100) * HBT 
* (E.G., IF L31A=605: X(I,M=6,N=5) IS PLOTTED); 
* FOR ALL M IF L31A=99,., ALL N IF L31A= .. 99; 
* FOR ALL M, ALL N (!) IF L31A.GE.9999. 
* SIMILARLY FOR L31B/C. 
* L32(EIFUN1) - PLOT AMPLITUDE ZETA OF THE EIGENFUNCTION. 
* L32A: 3D PLOT, L32B: CONTOUR PLOT 

* HBT 
* HBT 
* HBT 
* HBT 
* HBT 
* HBT 

* (FOR L32=1 BOTH OPTIONS ARE REALIZED) • * HBT 
* L33(EIFUN2) - PLOT CONTOURS OF THE COMPONENTS S*KSI AND S*ETA. * HBT 
* L33A: 3D PLOTS, L33B: CONTOUR PLOTS. 
* (FOR L33=1 BOTH OPTIONS ARE REALIZED). 
* L34 (EIFUN3) - VECTOR PLOT OF THE FLOW FIELD VX, VY: 

* HBT 
* HBT 
* HBT 
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c ' ~ 1 PLOT (NO DATA WRITTEN), * HBT 642 
c ' ~ 2 WRITE DATA ON FILE "DHBT" (NO PLOT) / * HBT 643 
c ' ~ 3 PLOT + WRITE DATA ON FILE "DHBT". * HBT 644 
c * NCON - NUMBER OF FLUX CONTOURS ON WHICH THE FLOW FIELD * HBT 645 
c ' IS TO BE PLOTTED. * HST 646 
c ' AMP - AMPLITUDE OF THE LARGEST VECTOR. * HBT 647 
c * 135 (STAB) - PLOT OMSQ(l)+SIGMA VERSUS QSTAR. * HBT 648 
c ' * HBT 649 
c * - NAMELIST/PL04/ FOR BALON: * HBT 650 
c * 141 * HBT 651 
c ****************************************************************** HBT 652 
c HBT 653 
C4 * START PROGRAM. HBT 654 

APPENDIX B: 

MODIFICATION FOR HBTAS (ASYMMETRIC EQUILIBRIA) 

The up-down asymmetric code HBTAS has been written in complete accordance with the 

conventions used in HBT. Hence, despite substantial changes in the main part of the program, 

the number of modifications refering to the documentation and input parameters discussed in 

Appendix A is minimal. In principle, only the additional parameters PAR4, PARS (discussed in 

Sec. IV), and PAR6 (reserved for future extensions, but presently not in use) describing the 

plasma cross-section are needed. The pertinent changes are given below, again using UPDATE 

conventions. 

*!DENT MOD45AS 
'/ 
*I MODIFICATIONS OF HBT FOR UP-DOWN ASYMMETRIC EQUILIBRIA. 
'/ 
*DELETE HBT.11 

PARAMETER(VERSION~'45AS') 

*INSERT HBT.281 
C PAR4,PAR5,PAR6, 

*INSERT HBT.360 
C * PAR4-PAR6 - ADDITIONAL PARAMETERS FOR ASYMMETRIC EQUILIBRIA. 

MOD 1 
MOD 2 
MOD 3 
MOD 4 
MOD 5 
MOD 6 
MOD 7 
MOD B 
MOD 9 

* MOD 10 
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APPENDIX C: 

DEFAULT VALUES OF THE NAMELIST INPUT DATA 

HBT contains a BLOCK DATA subprogram preceding the main program in which 

representative values of the NAMELIST input parameters are fixed. Hence, the program will also 

run if none of these values is overwritten in the INPUT file. Of course, actual runs will have a 

non-empty INPUT file overwriting the default values. Should the user wish to minimize the 

number of parameters to be specified in a series of runs, the place to insert his typical choice of 

representative parameters is in this BLOCK DATA subprogram. Of course, this implies that the 

program has to be recompiled. 

C*********************************************************************** DATA. 
C* BLOCK DATA STATEMENTS TO INITIALIZE VARIABLES IN THE COMMON BI.D:KS * DATA. 
C* CHR, VRl, PRl, PLl, VR2, PR2, PL2, VR3, PR3, PL3, VR4, PR4, PL4. * DATA. 
C*********************************************************************** DATA. 

1 
2 
3 
4 
5 
6 

BLOCK DATA 
IMPLICIT REAL*B (A-H) , REAL*B (0-Z) 

DATA 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 
DATA 
DATA 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 
DATA 
DATA 

(COMMON statements omitted) 

PAIO,GAM0/2*0,/ 
RUN,NOTE,IIN,IO,IOD 

I' •, • •, 10,20, 20/ 
GAMl,IGAM,AGA,BGA,CGA,DGA,EGA 

I 1., 1,-1., o., o., o., 1,/ 
PAil,IPAI,API,BPI,CPI,DPI,EPI 

I 1., 1,-1., o., o., o., 1./ 
ICROSS,PAR1,PAR2,PAR3,JPTS0,MCM,ERRCM,NITCM 

I 1, 1., 0., O., 256,120,1.E-5, 20/ 
Nll,Nl2,Nl3,Nl4,Nl5,Nl6,Nl7,NlB,Nl9 /9*0/ 
Nl5A,Nl5B,Nl5C,Nl5D,Nl5E,Nl5F,Nl5G,Nl5H,Nl5I /9*0/ 
Nl7A,Nl7B,NlBA,NlBB,Nl9A,Nl9B /6*0/ 
Lll,Ll2,Ll3,Ll4,Ll5,KRAD,LANG 

I o, o, o, o, o, 10, 16/ 
NEPS,NDEL,NQS 

I O, 1, 0/ 
IINT,JPTS,MHARM,ERROR,NIT 

I 50, 64, 8,l.E-5, 10/ 
NPRE,IMIX,NMIX,AMIX,BMIX 

I o, 0, o, o., 0,/ 
N21,N22,N23,N24,N25,N26,N27,N2B,N29 /9*0/ 
N210,N2ll,N212 /3'0/ 
N23A,N23B,N24A,N24B,N24C,N24D,N24E,N24F,N24G /9*0/ 
N25A,N25B,N26A,N26B,N26C,N2BA,N2BB,N2BC /8*0/ 
N210A,N210B,N211A,N211B /4*0/ 
N212A,N212B,N212C,N212D,N212E,N212F,N212G /7*0/ 
L21,L22,L23,L24,L25,L26,L27,L28,L29 

I o, O, o, o, o, o, O, o, OJ 
L21A,L21B,L21C,KCON 

I o, o, o, 10/ 
WALL,QSTAR1,QSTAR2,NQSTAR,Ml,M2,NN,LE,NEV 

/100., 1., 1., 1,-3, 7, 6, 1, 1/ 
I.MARG,SIGMA,NEF,NAPHI 

I a, a., o, 0.1 
N31,N32,N33,N34,N35,N36 /6*0/ 
N37,N38,N39,N310,N311,N312,N313 /7*0/ 
N31A,N31B,N31C,N31D,N31E,N31F,N31G,N31H /8*0/ 

DATA. 
DATA. 

DATA. 4B 
DATA. 49 
DATA. 50 
DATA. 51 
DATA. 52 
DATA. 53 
DATA. 54 
DATA. 55 
DATA, 56 
DATA. 57 
DATA. SB 
DATA. 59 
DATA. 60 
DATA. 61 
DATA. 62 
DATA. 63 
DATA. 64 
DATA. 65 
DATA. 66 
DATA. 67 
DATA. 6B 
DATA. 69 
DATA. 70 
DATA. 71 
DATA, 72 
DATA. 73 
DATA. 74 
DATA. 75 
DATA. 76 
DATA. 77 
DATA. 7B 
DATA. 79 
DATA. BO 
DATA. Bl 
DATA. B2 
DATA. B3 
DATA. 84 



DATA 
DATA 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 

A 
DATA 
DATA 
DATA 
DATA 
DATA 
END 
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N31I,N31J,N31K,N31L,N31M,N31N,N310,N31P /B*O/ 
N35A,N358,N312A,N312B,N313A,N313B /6*0/ 
L31,L32,L33,L34,L35 

I o, o, o, o, 0/ 
L31A,L31B,L31C,L32A,L32B,L33A,L33B,NCON,AMP 

1 o, o, o, o, o, o, o, 10, .21 
NPOL,PSI1,PSI2,NPSI,QST1,QST2,NQST,TO,TBB,TBF,DBT 

I 9, .02, 1., 50, 1., 1., o,o., 0.,100., .1/ 
JPTS2,MHARM2,ERROR2,NDABAL 

I 64, B, l .E-9, O/ 
NSHOOT,MOD01,MOD02,TX1,TX2,NTX,ALAM1,ALAM2,NLAM 

I o, 1, 1,-20.,20., 41, o., -1., 6/ 
XF ,NX,ABSER2 

/20,,20,1.E-10/ 
N41,N42,N43,N44,N45,N46,N47,N48 /8*0/ 
N49,N410,N411,N412 /4*0/ 
N41A,N41B,N41C,N42A,N42B,N42C /6*0/ 
N43A,N43B,N43C,N44A,N44B,N44C /6*0/ 
141 /O/ 

DATA. 85 
DATA. 86 
DATA. 87 
DATA. 88 
DATA. 89 
DATA. 90 
DATA. 91 
DATA. 92 
DATA. 93 
DATA. 94 
DATA. 95 
DATA. 96 
DATA. 97 
DATA. 98 
DATA. 99 
DATA.100 
DATA.101 
DATA.102 
DATA.103 
DATA.104 
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APPENDIX D: 

OUTPUT PARAMETERS 

In the OUTPUT of HBT the computed variables appear with names that are self­

explanatory in most cases. For the convenience of the user the meanings of all these variables 

are given below. The output of an actual run is given in Appendix F. 

1) Conformal mapping: 

ITCM 

IBST 

number of iterations for conformal mapping to each prescribed accuracy 

ERR CM. 

accuracy of the conformal mapping on output. 

2a) Equilibrium (q* independent parameters): 

IT 

AB SER 

AMSQER 

A 

B 

QSW 

Q()W(*) 

QlW 

EBETPL 

BETAAW 

BETAOW 

ELL 

BLONG 

AREA 

VOLUME 

PVOLAR 

AEFF 

BPOLIN 

number of iterations for equilibrium to each prescribed accuracy ERROR. 

absolute error of the flux function on output. 

absolute mean square error of the flux function on output. 

eigenvalue A of the Grad-Shafranov equation (Eq. (5.10)). 

eigenvalue B of the Grad-Shafranov equation (Eq. (5.10)). 
q:• = q*/a,. 

q0 = q<fa (preliminary value, corrected for q* dependent part below). 

Ci1 =qi/a 
Ei}p = 4itq*2 <!}> S/(eC2). 

<~> = <!}> . a,2/E. 
- 2 !lo = !lo · a /£. 
ellipticity of the magnetic surfaces at the magnetic axis. 
normalized elongation of the plasma circumference: C{lita. 

dimensionless area of the plasma cross-section: S/a2. 
dimensionless plasma volume: V !Rzy!.2. 

<.f pdV)/(f pdS/S): factor to correct area averaged <ll> to volume averaged 

value. 
lleff = ..J<i}>/!}0: effective plasma radius 

Bp(s=l, t=it): measure of the poloidal variation of Bp. 
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2b) Equilibrium (q* dependent parameters): 

QS q* (Eq. (4.3)). 

ALFA a (Eq. (2.3)). 

<jJW ifo = qofa. 
QO qo. 

Ql qi. 

BETAA <P>. 

BETAO Po· 
BTORNL - Bcj>(S=0)/B0• 

3) Global stability (all quantities: high-~ approximation): 

QSTAR - q*. 

QOO - qo. 

Qll - qi· 

BETAOOE - Pofe. 

BETAOE - <P>/E. 

OMSQ ol: growth rate. 

SIGMA - a= -ro2 cut-off : cut off for the growth rate to be considered for marginal 

stability. 

4) Ballooning stability: 

PSI - 'I'· 
PAI - value of profile TI(\jl). 

GAM value of profile r(\jl). 

p P('l') "' P('l')/po. 

G - G(\jl) = (P(\jl) + t F2(\jl))/e (Eq. (2.3)). 

GPAR - -(4~q*2/eB~)'1'1' dp/d\jl. 

QST - q*. 

RB TOR - RBcj>l(R0B0). 

Q q. 

QW q = q/a. 

DQWDPS - dq /d\jl. 

SHEAR - 2 (\jl/q) (dq/d\jl). 



DM 
11 ALPNEG 11 

1N 
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Mercier parameter DM (Mercier criterion: DM < _l/4). 

ballooning unstable for ... values of 1N. 

angular measure for ballooning instability. 
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APPENDIX E: 

THE USE OF HBT (JCL PROCEDURES) 

In this appendix the JCL procedures to run HBT and HBT AS on the JET IBM system are 

given. 

The example JCL procedure to run HBTAS which is printed below can be found in the 

file : JETLIB.EXAMPLES.CNTL. The dataset FTlOFOOl is the input file containing the 

namelist input variables, FT20F001 is used for written output, SPLINP and SPLINF are 

respectively the input files for the spline coefficients of the Il(\jl) and the f(\jl) profiles (see also 

appendix G). The files CINP, OHBT, COUTl, COUT2, DHBT and DABAL are temporary 

storage files. The plot output is written to JETUID.HBTGRID.LIST (FT41F001). 

//XXXHBT 

II 
II 
II 
II 
II 

JOB ( ), 'G.HUYSMANS' 

PRTY=7, 
MSGCLASS=X, 

NOTIFY=*, 

TIME= ( 10, 00) , 

REGION=4096K 

/*JOBPARM LINES=SO 

!/********************************************************** 
II* AUTHOR 

II* DATE 

II* 

G,HUYSMANS 

: 29/03/90 

//* SUBMITTED FROM : JETLIB.EXAMPLES.CNTL(HBT) 

//* SAMPLE JCL TO RUN THE MHD STABILITY CODE, HBT 

II* 
//* NOTES : 

//* 1. BEFORE SUBMITTING THIS JCL, CHANGE <JETUID> TO YOUR OWN UID 

//* 2. JETUID.HBT.OUTPUT SHOULD HAVE THE FOLLOWING ATTRIBUTES: 

II* RECFM=VBA,LRECL=137,BLKSIZE=6300 

II* 
//****************************************************************** 

//GRID EXEC GH80NEW,DSN='JETUID.HBTGRID.LIST',NUMRECS=300 

II* 
//R EXEC PGM=HBTAS 

//STEPLIB DD DSN=JETLIB.HBT.LOAD,DISP=SHR 

//FT06F001 DD SYSOUT~* 

//FTlOFOOl DD 
//SHAPE DD 
//FT20F001 DD 

DSN=JETLIB.HBT.DATA(Sl0766),DISP=SHR 

DSN~JETLIB.HBT.OATA, (SHP766C),DISP~SHR 

DSN=JETUID.HBT.OUTPUT,DISP=OLD 

//SPLINP 
//SPLINF 
//CINP 

II 

DD DUMMY 

DD DUMMY 
DD DNS=&&CINP,DISP=(NEW,DELETE),UNIT=TEMP, 

DCB=(DSORG=PS,LRECL=l33,BLKSIZE=l3300,RECFM=FBA), 



II 
//OHBT 

II 
II 
//COOT! 

II 
II 
//COUT2 

II 
II 
//DHBT 

II 
II 
//DABAL 

II 
II 
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SPACE=(TRK, (1,5)) 

DD DNS=&&OHBT,DISP=(NEW,DELETE),UNIT=TEMP, 

DCB=(DSORG=PS,LRECL=133,BLKSIZE=l3300,RECFM=FBA), 

SPACE=(TRK, (100, 100)) 

DD DNS=&&COUTl,DISP=(NEW,DELETE),UNIT=TEMP, 
DCB=(DSORG=PS,LRECL=133,BLKSIZE=l3300,RECFM=FBA), 

SPACE=(TRK, (1,5)) 

DD DNS=&&COUT2,DISP=(NEW,DELETE),UNIT=TEMP, 

DCB=(DSORG=PS,LRECL=l33,BLKSIZE=l3300,RECFM=FBA), 
SPACE=(TRK, (1,5)) 

DD DNS=&&DHBT,DISP=(NEW,DELETE),UNIT=TEMP, 

DCB=(DSORG=PO,LRECL=80,BLKSIZE=6300,RECFM=FB), 
SPACE=(TRK, (1,5)) 

DD DNS=&&DABAL,DISP=(NEW,DELETE),UNIT=TEMP, 
DCB=(DSORG=PS,LRECL=137,BLKSIZE=6300,RECFM=VBA), 

SPACE=(TRK, (1,5)) 

//FT41F001 DD DNS=JETUID.HBTGRID.LIST,DISP=SHR 

I* 

This JCL file will run the asymmetric version of HBT, i.e. HBT AS. To run the 

symmetric version HBT, one has to replace the line : 
//R EXEC PGM=HBTAS 

by: 
//R EXEC PGM~HBT 

Note : For more information about the use of HBT on the IBM contact : C. Nardone (phone 

no.: 4975) 
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APPENDIX F: 

COMPLETE EXAMPLE: ANALYSIS OF DISCHARGE #20272 

In this appendix we will describe a complete example of HBT. For this we reconstruct the 

IDENTC equilibrium of the high-~ discharge #20272 with HBT and compare the output 

quantities of both codes. The ballooning stability of this equilibrium is calculated and the 

complete output of the equilibrium and ballooning calculation are given. To show the complete 

output of a low-n stability run, the equilibrium is changed to an equilibrium in the high beta 

approximation , i.e. with zero inverse aspect ratio and q • = 1.0 and calculate the stability of the 

n=l mode. 

The relevant output of the fit of IDENTC to both the magnetic signals and a pressure 

profile from the LIDAR diagnostic is shown in table IV. The input parameters for HBT 

calculated from the IDENTC output with the equations of sec. Y are shown in the same table. 

Also shown in table Y is the comparison of the output quantities of both IDENTC and HBT. 

The value of o, the shift of the magnetic axis is found after a sqan in o, such that the value of l3i 
is the same for both codes. The difference in the values of the output parameters is caused by 

the difference in plasma shape. 

The complete output of HBT of a ballooning calculation for two different values of the 

total pressure is shown below. The output file starts with the complete namelist input file. Also 

shown are the plots of the equilibrium profiles. 
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Table IV. 

Input and output parameters for shot #20272 

IDENTC Value calculated for HBT 

E = 2.0529*> PARl = 1.72; PAR2 = 0.38; PAR3 =0 

lit = 0.5006*) 

a1 = - 0.7783 a,, = - 0.432 ; b1l = - 0.568 

b1 = 16.481 ay = 2.511 ; by = - 3.511 

bl = 0.97594 C11=dn=O; e11 = 1.0 

c1 =dy=0; e1 = 1.0 

PAil = GAMl = 0 

RE = 4.082 m !PAI = IGAM = 1 

RW = 1.862 m a = 1.llOm; Ro=2.972m 

Ip = 2.062MA E = 0.373 

Bo = 1.222 T 

e = *) q • 1.706 = 

<I>o = -0.441 Wb 

<I>1 = -5.659 Wb a = 1.813 

RMAG = 3.12 m 

ll = 0.148 

IDENTC Output value ofHBT 

~I = 0.652 ll = 0.1208 

qo = 1.060 ~I = 0.652 

ql = 4.022 qo = 1.068 

a = 1.813 ql = 4.13 

a = 1.856 

*) The values given by IDENTC for the double x-point plasma shape appear to be 

too large, the values used in HBT are obtained from a plot of the flux surfaces 



PROGRAM HBT 
VERSION-'45' 
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&VARl RUN-' - ', NOTE- 'SHOT #20272, T•S2. SS, IDENTC FIT', 10-20, IOD-20, 
GAMl- 0 00000, IGAM- 1. AGA- -.43200, BGA• -.56800, CGA• 0.00000, DGA• 0.00000, EGA- 1.00000, 
PAil· 0.00000, IPAI• 1, API- 2.51100, BPI- -3.51100, CPI• 0.00000, DPI- 0,00000, EPI- 1.00000, 
ICROSS- l, PARl- 1.72000, PAR2- .38000, PARJ• 0.00000, JPTS0-256, HCH-127, ERRCH- 1.0000E-05, NITCH-100, HODEl· l &END 

&PRI l &END 
&PI.01 &END 

&VAR2 EPSl• .37300, EPS2• .37300, NEPS• 1, DELl- .12080, DEL2- .18080, NOEL• 2, QSl-1.70600, QS2-1.70600, NQS- l, 
IINT•lOO, JPl'S-128, HHARH• 20, ERROR• 1.0000E-06, NIT• 25, 
NPRE- 0, IHIX- 0, NHIX- 0, AMIX- 0,00000, BHIX• 0.00000, HODE2- 1 'END 

&PRl2 &END 
&PL02 &END 

&VAR4 NPOL-20, PSil- .05000, PSI2• .95000, NPSI•lO, QSTl• 1.70600, QST2- 1.70600, NOST• 1, TO• 0.00000, TBB• 0.00000, 
TBF- 50.00000, DBT- .10000, JPTS2•128, HHARH2•30, ERROR2• 1.0000E-09, NDABAL- 0, 
NSHOOT- 0, HODOl• 1, HOD02• 1, TXl- -20.00000, TX2- 20.00000, NTX• 41, ALAHl- 0.00000, ALAH2- -1 00000, NLAH- 6, 
XF- 20.00000, NX• 20, ABSER2• 1.0000E-10, SIGMAS- 0.00000, MODE4• l 'END 

&PRI4. &END 
&PI.04. &END 

PROFILES: 

O.OOOOEtOO IGAM -
AGA - -4.3200E-01 BGA - -5.6800E-01 CGA O.OOOOE+OO 
DGA • -1.7764E-15 EGA l,OOOOEtOO 
PAil O.OOOOE+OO IPAI 1 
API 2.SllOEtOO BPI - -3.5110E+OO CPI O.OOOOE+OO 

"' O.OOOOEtOO EPI 1.0000E+OO 

CROSS-SECTION: 

!CROSS• D-SH.APE 
PARl 1.7200E+OO PAR2 3.8000E-01 PAR3 - O.OOOOE+OO JPTSO •256 

CONFORMAL HAPPING: 

HCH •127 ERRCM • 1. OOOOE-05 
TEST 6.5348E-06 NITCH •100 ITCH - 22 

EQUILIBRIUM: 

EPS - 3 7300E-01 DEL l ,20BOE-Ol 
IINT -100 Jt'TS -128 HHARH - 20 
A - 3.S728Et00 B - 2.S294E-01 
ELL 1.4631Et00 ERROR - 1.0000E-06 NIT - 25 
QOW(*)- 5.8262E-01 BETA.OW• 9.8065E-01 
ELONG - 1.3893Et00 AMSQER• 3.4487E-07 IT • 12 
QlW - 2.2275E+OO BETMW- J.2878E-01 AREA - S.J066E+OO 
ABSER - -4.J18SE-08 PVOLA.R• l.0478E+OO 
QSW 9.191SE-01 EBETPL• 2.4308E-01 VOLUME• J.2196E+Ol 
BPOLIN- 1. 7259E+OO AEFF - 5. 7902E-01 

OS 1. 7060E+OO QO l ,0681E+OO 
BETAO • 1.0618E-Ol XLI 7.894JE-Ol 
ALFA • l.8561E+OO BTORNL• 9.8769E-01 
Ql 4.1344E+OO BETM - J.5598E-02 

LOCAL BALLOONING STABILITY: 

POLYNOMIAL FITTING FOR NPOL 20 

PSll 
TO 

S.OOOOE-02 PSI2 9. SOOOE-01 NPSI 
O.OOOOE+OO TBF 0. OOOOE+OO TBB 

ABS ERR FOR S-FLUX: F.RROR2• 1. OOOOE-09 
SIGHAB • 0. OOOOE+OO 

PSI - S.OOOOE-02 PAI 1.ll68E+OO GAM 
QST 1. 7060E+OO RBTOR - 1.0278E+OO Q 
DH - J.7310E-01 BALLOONING STABLE 

PSI 1. 5000E-01 
QST 1. 7060E+OO 
DH • -8. 5990E-02 

PSI • 2, 5000E-01 
OST 1. 7060E+OO 
DH • -l.J751E-01 

"' RB TOR 
l .2977E+OO GAH 
1.0202Et00 Q 

BALLOONING STABLE 

PAI 1.408JE+OO GAH 
RBTOR - l.0141E+OO 0 
BALLOONING STABLE 

PSI - J.SOOOE-01 PAI l.4488E+OO GAH 
OST 1.70601'.+00 RBTOR - 1.0094.E+OO Q 

DH -l,3876E-01 BALLOONING STABLE 

t'Sl - 4.SOOOE-01 PAI 1.4190E+OO GAH 
OST l.7060E+OO RBTOR • 1,0058Et00 0 
DM - -1.2605E-01 BALLOONING STABLE 

PSI - S.SOOOE-01 PAI 1.3190Et00 GAM 
QST l. 7060E+OO RBTOR • 1.00331'.+00 Q 
DM • -l.0786E-01 BALLOONING STABLE 

10 OSTl 
S.OOOOE+Ol DBT 

9. 7698E-01 P 
1.0848E+OO QW 

9.2242E-01 P 
l .1282E+OO QW 

8. 5650E-01 
l.1870E+OO 

p 

OW 

7. 7922E-01 P 
1.2651E+OO QW 

6.9058E-01 P 
1. 3686E+OO OW 

5.9058E-Ol P 
1. 5074E+OO QW 

"' OST 
6. SOOOE-01 
l. 7060E+OO 

PAI l,1488E+OO GAH - 4.7922E-01 P 
RBTOR - l.0016E+OO Q 1.6986E+OO QW 

1. 7060E+OO OST2 1. 7060E+OO NOST • 
1.0000E-01 JPTS2 -128 HHARM.2- JO 

- 4.6638E-01 G 1.9480E+00 GPAR - J.81JOE-01 
5.8447E-01 DQWDPS- 1.97231'.-01 SHEAR - J.374SE-02 

4.1157E-Ol G 1.608JE+OO 
6.0784E-01 DQWDPS- 2. 7234E-01 

- J. 5017E-01 G 1. 29021'.+00 
6.J952E-01 DQWDPS• J.6453E-01 

GPAR -
SHEAR -

6740E-01 
.J441E-01 

GPAR l.0752E+OO 
SHEAR - 2. 8500E-01 

- 2.8536E-Ol G • 9.9768E-01 GPAR • l.3087E+OO 
- 6.8159E-01 DQWDPS- 4.82JJE-01 SHEAR• 4,9536E-01 

- 2.2031E-01 G 7.J477E-01 
7.3735E-01 DQWDPS- 6.4131E-01 

GPAR - 4534E+OO 
SHEAR - 7.8278E-Ol 

1.5819E-01 G - 5.0557£-01 GPAR 1.4936Et00 
l .1769E+OO 8.1212E-01 DQWDPS- 8.6892£-01 SHEAR 

t.0217E-01 G - J,1413E-01 Gt'AR - 4142E+OO 
. 7326E+OO 9.1515E-01 DQWDPS- 1.2197E+OO SHEAR• 
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DM - -8. 7055E-02 BALLOONING STABLE 

1. 5000E-01 PAI 
1. 7060Et00 RB TOR 

9.0831E-01 GAM 
1.0006Et00 Q 

DM -6.4421E-02 BALLOONING STABLE 
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3. 5650E-01 P 
1.9754E+00 OW 

PSI 
QST 

8. 5000E-01 
1. 7060Et00 "' RBTOR -

.9765E-01 GAM - 2.2242E-Ol P 

.0002Et00 Q 2.41J4E+00 QW 
DM -4. 0072E-02 BALLOONING STABLE 

PSI 
QST 

9.5000E-Ol PAI - 2.1677E-01 GAM 
1. 7060Et00 RB TOR - , OOOOE+OO Q 

DM -1.3441E-02 BALLOONING STABLE 

&VAA2 EPS- .37300, DEL- .18080 'END 

CONFORMAL MAPPING: 

MCM -127 ERRCM l .OOOOE-05 
TEST 7 .8416E-06 NITCM -100 

EQUILIBRIUM: 

EPS J. 7300E-01 DEL 1. 8080E-01 
IINT -100 JPTS -128 
A J.5787£+00 B 4.33JJE-Ol 

7. 6980E-02 P 
3.2527£+00 Ql'l 

ITCH - 27 

MHARM - 20 

ELL 1.4734E+OO ERROR - 1.0000£-06 NIT - 25 
QOW(*)- 5.5631E-01 BETAOW- 1.6828£+00 
ELONG - l .J885E+OO AMSQER- 6.15621!.-07 IT 9 
OlW 2.5460E+OO 
ABSER - -7. 7900£-08 
QSW 9.6255£-01 
BPOLIN- 1.4538£+00 

BETAAW- 5. 4 28 lE-01 
PVOLAR- 1. 0622£+00 
EBETPL- 4. 4061E-01 
AEFF - 5. 6794E-01 

OS 1.7060£+00 00 - 9.18461!.-01 
BE TAO - 1. 9982E-01 XLI - 8. 4059E-01 
ALFA - 1.7724£+00 BTORNL- 9.Jl51E-01 
Ql 4.5125£+00 BETAA - 6.445JE-02 

LOCAL BALLOONING STABILITY: 

POLYNOMIAL FITTING FOR NPOL - 20 

AREA - 5.J066E+OO 

VOLUME- 3.2196E+Ol 

- 5.5433E-02 G 1.6450E-Ol GPAR 
l.0643Et00 OQl-IDPS- l,8237E+OO SHEAR 

1.2011£+00 
2.5104£+00 

2.11461!.-02 G - 6,0741E-02 
l.300JEt00 DQl-IDPS- 3.067BE+OO 

GPAR • 8.4135£-01 
SHEAR - 4.0110£+00 

- 2.4817£-03 G 6.9181£-03 GPAR 
- 1.7525£+00 OQl-IDPS- 6.8130£+00 SHEAR 

3.2261£-01 
7.3866E+OO 

PSil 5.0000E-02 PSI2 9.5000£-01 NPSI - 10 QSTl 1.7060Et00 OST2 1.7060E+OO NOST -
TO - 0.0000£+00 TBB O.OOOOE+OO TBF 5.0000E+Ol DBT - l.OOOOE-01 JPTS2 -128 MHARM.2- 30 
ABS ERR FOR S-FLUX: ERROR2- 1.0000E-09 
SIGMAS - 0.0000E+OO 

"' QST 

OM 

5.0000£-02 PAI 1.1168£+00 GAM 
1.7060Et0D RBTOR - 9.91J5E-01 Q 
6.4549E+OO ALP NEG. IN 1 PTS: 

9. 7698E-01 
9.3294£-01 OW 

1. TN- 1.1200£+01 

"' QST 
1.5000£-01 PAI 1.2917Et00 GAM 9.2242E-01 P 
1.1060£+00 RBTOR - 9,8141E-01 0 9.1JJJE-01 QW 

OM 9.9029£-01 ALP NEG, IN l PTS: 1. TN- 9,JOOOE+OO 

PSI - 2.50001':-01 PAI l.4083E+OO GAM 8.5650£-01 P 
QST 1.7060E+OO RBTOR - 9.8519E-01 Q l.OJ12E+OO OW 
DM - 2.2808£-01 ALP NEG. IN 1 PTS: 1. TN- J.7000E+OO 

PSI - J.5000E-01 PAI l.4488Et00 GAM 1.1922£-01 P 
OST 1. 7060&+00 RBTOR - 9.8602£-01 0 1. l108Et00 OW 
DM - 2.5654£-0J ALP NEG. IN l PTS: 1. TN- 3.0000E+OO 

PSI - 4.5000£-01 PAI 1.4190£+00 GAM 6.9058£-01 
QST 1.1060E+OO RBTOR - 9.8163£-01 Q l.2191Et00 OW 
OM - -7,8351E-02 ALP NEG, IN 1 PTS: 1. TN- 2.6000£+00 

PSI 5, 5000£-01 PAI 1.3190£+00 GAM 5.9058£-01 P 
OST 1.7060E+OO RBTOR .. 9.9015£-01 Q 1.3617£+00 OW 
DM - -1.0440£-01 ALP NEG. IN 1 PTS: 1. TN- 2.3000£+00 

PSI 
QST 
OM 

6. 5000£-01 
1.7060£+00 

PAI 
RB TOR 

1.1488£+00 GAM 
9.9309£-01 0 

- -1. 0463£-01 ALP NEG. IN 1 PTS: 

4.1922£-01 p 
l. 5770E+OO OW 

1. TN- 2.4000E+OO 

PSI 7.5000£-01 PAI 9.0831£-01 GAM - 3.5650E-01 P 
QST 1.7060Et00 RBTOR - 9.9599£-01 0 1.8876E+OO OW 
OM - -8.9937£-02 BALLOONING STABLE 

PSI 8.5000£-01 PAI 5.9765£-01 GAM 2.2242£-01 P 
OST 1.7060£+00 RBTOR - 9.9838£-01 O 2.3935E+OO OW 
OM - -6.3909£-02 BALLOONING STABLE 

PSI 9.5000E-01 PAI 2.1677£-01 GAM 1.6980E-02 P 
OST 1.7060£+00 RBTOR - 9.9980£-01 0 3.4009E+OO QW 
DH - -2.5071£-02 BALLOONING STABLE 

PROGRAM HST 

- 8.0031E-01 G l.9512E+OO GPAR - 7.1758£-01 
- 5.2638E-01 DQWDPS- 1.8391£-01 SHEAR - 3.4938£-02 

- 7.0626E-01 G 1.6110£+00 GPAR - 1.4442£+00 
- 5.4917E-01 DQWDPS- 2.7413£-01 SHEAR - 1.497SE-Ol 

- 6.0090£-01 G 1.2923E+OO GPAR - 2.0234Et00 
- 5.8183£-01 DQWDPS- 3.8291£-01 SHEAR - 3.2911E-01 

- 4.8968E-01 G 9.99J2E-01 GPAR - 2.4629£+00 
- 6.2675E-01 DQWDPS- 5.2190£-01 SHEAR - 5.9290£-01 

- 3.7805E-01 G 7.3599E-01 GPAR 2. 7353Et00 
9.2961£-01 - 6.8785£-01 DQWDPS- 7.1048£-01 SHEAR 

- 2. 7145E-01 G 5.0641£-01 
- 1.1165E-01 DQWDPS- 9.8412E-Ol 

1.7533E-01 G - 3.1464E-01 
8.8918E-Ol DQWDPS- l.4141E+OO 

GPAR - 2. 8108£+00 
SHEAR - l.4029E+OO 

GPAR - 2.6613Et00 
SHEAR - 2.0660Et00 

9.5124£-02 G 1.6477E-01 GPAR - 2.2604Et00 
1.0650E+OO DQWDPS- 2.1699Et00 SHEAR - 3.0561Et00 

3.6286£-02 G 6.0841£-02 GPAR - 1.5833Et00 
1.3504£+00 DQWDPS- 3.7654Et00 SHEAR - 4.1401Et00 

4.2587E-03 G 6.9295E-03 GPAR - 6.0113£-01 
- 1.9188£+00 DQWDPS- 8.1598Et00 SHEAR - 8.6139£+00 
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SHOT #20272, T =52.5S,IDENTC FIT 

22. FLUX CONTOURS 2.00 .--~__;;:=.;c=:.:..:,..:::=.;_;_::..::..:..:.=..-~ 

1.00 

>-0.00 

-1.00 

-2.00 ........,,.,,.,,....----,,..+,----..,.-~ 
-1.00 0.00 1 .00 

90--03-23 
20:12:00 

x 
HBT, P45272 

SHOT #20272, T =52.5S,IDENTC FIT 

24. FLUX FUNCTION 1.00 .------.°'-'-~c:..;,..:_.;;..;.=-'"T-'"--~ 

.75 

~ .50 

.25 

90--03-23 
20:12:00 HBT, P45272 



.80 

.60 

a: 
0 I- .40 ...., 

.20 

.00 
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SHOT #20272, T =52.5S,IDENTC FIT 
27. POLOIDAL FIELD 1.00 ~-__:;.:..;..:....::..:::.::;..::o.:=:..:....::=-~ 

.50 

....I 

~0.00 
CXl 

-.50 

-.20 '-=-'"---:,,...---L.--~-_,..... -1.00 L..,L._-,.l,...--,...L--,,L.._-__J 
-1.00 -.50 0.00 .50 1.00 -1.00 0.00 .50 1.00 

90-03-23 
20:12:00 

x x 
HBT, P45272 

SHOT #20272, T =52.5S,IDENTC FIT 

28. NORMALIZED Q-PROFILE ---T2""'9.-'T-"O-'-R:..::O'°"ID:..;.A-'-L_F_IE~L.;.;.D_~ 1.00 .---"'-r.=.;..;.;..;.;.==_..:;..-r-'.;;..;_=:..., 1 .20 ~ 

1.00 

.75 

.80 

~ 
a: g .50 
0 
I- .60 
CXl 

.40 

.25 

.20 

0.00 "::-::--:.::-----,=-=-:,...----:"::---:-:! 0.00 ...,...,---'---'---~---I 
-1.00 -.50 0.00 .50 1.00 -1.00 -.50 0.00 .50 1.00 

90-03·23 
20:12:00 

x x 
HBT, P45272 
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Below the output of the low-n mode stability calculation of the high beta equilibrium is 

given. Note that NEPS=O and NQS=O in the high beta equilibrium option of HBT. 

PROGRAM llBT 

YERSION-'450' 

&VAAl RUN-'-', NOTE-'SHOT f20272, T-52.SS,IOENTC FIT', I0--20, 100•20, 
GAMl- 0.00000, IGAM• 1, AGA- -.43200, BGA• -,56800, CGA- 0.00000, OGA• 0.00000, EGA- 1.00000, 
PAil• 0.00000, IPAI- 1, API- 2.51100, BPI- -3.51100, CPI• 0.00000, DPI• 0.00000, EPl- 1.00000, 
!CROSS• 1, PARl• 1.72000, PAR2- ,38000, t'ARJ• 0.00000, JPTS0•256, MCM-127, ERRCM• l.OOOOE-05, NITCM•lOO, MODEl• l &END 

&PRil &END 
&PLO! &END 

&VAR2 EPSl•0.00000, EPS2•0.00000, NEPS- 0, DELl- .12080, DEL2- .12080, NOEL- l, os1-1.ooooo. os2-1.ooooo, NOS- 0, 
IJNT•lOO, JPTS•12B, HHARM- 20, ERROR- l.OOOOE-06, NIT- 25, 
NPRE• 0, HHX- 0, NMIX- 0, AMIX• 0.00000, BHIX• 0.00000, MODE2• 1 &END 

&PRI2 &END 
&PL02 &END 

&YAR3 WALL- l. 50000, QSTARl- 1. 70600, QSTAR2- l. 70600, NQSTAR- 1, Hl--15, H2• 15, NN-10, LE• 1, NEY• 1, 
LHARG- 0, SIGMA• O.OOOOEtOO, NEF- 1, NAPHI- 1, HODE3• 1 &ENO 

&PRIJ N31• 0, N32• 0, N33• O, N34- 0, N35· 0, N36• 0, N37• 0, N38- 0, N39• 0, NJlO• 0, N311• 0, N312- 0, N313• 0, 
N31A• 0, N31B• 0, NJlC· 0, N310- 0, NJlE- 0, N31F• 0, N31G• 0, N31H- 0, NJlI- 0, N31J• 0, 
NJlK- 0, NJlL- 0, N31H• 0, N31N• 0, N310- 0, N31P- O, N35A- 0, N35B• 0, N312A· O, N312B• 0, N313A• 0, N313B- 'END 

&PLOJ LJl• 0, L32- 1, L33• l, L34- 3, L35· 0, LJlA­
NCON• 10, AMP• 2.0000E-01 'ENO 

0, L31B• 0, L31C• O, L32A• 0, L32B- l. L)JA• 0, L33B- l. 

PROFILES' 

GAHl O.OOOOEtOO IGAH -
AGA - -4.3200E-01 BGA • -5.6800E-Ol CGA O.OOOOEtOO DGA - -1.7764E-15 
PAil O.OOOOEtOO !PAI 

"" 2.SllOE+OO BPI -3.5110Et00 CPI O.OOOOE+OO DPI • O.OOOOE+OO 

CROSS-SECTION: 

!CROSS· D-SHAPE 
PARl l.7200E+OO PAR2 - 3.SOOOE-01 PAR3 • 0. OOOOE+OO JP TSO •256 

CONFORMAL HAPPING: 

HCH -127 ERRCM • l.OOOOE-05 TEST - 9.5836E-06 NITCM -100 

EQUILIBRIUM: 

EPS O.OOOOE+OO DeL 1. 2080E-01 
A 3. 5294E+OO B 4. 4606E-Ol 
QDW 5. 7513E-Ol BETAOW• 1. 7084E+OO 
OlW 1. 8561Et00 BETMW• 5. 6560E-01 
osw 9.5810E-Ol EBETPL• 4. 5446E-01 

GLOBAL STABILITY: 

WALL - . SOOOE+OO QSTARl· l. 7060E+OO 
Ml --15 H2 • 15 

lINT -100 
EU 
ELONG • 
AREA -
VOLUME-

QSTAR2• 

"' 

1.4492E+OO 
1.3892E+OO 
S.3066E+OO 
3.3342E+Ol 

. 7060Et00 
10 

JPTS -128 

ERROR -
AHSQER• 

ABSER -
BPOLIN• 

NQSTAR• 
CE 

l. OOOOE-06 
8. 8839E-07 

-l.1537E-07 
l .1297E+OO 

2 

QSTAR - , 7060Et00 QOO 1. 024 lE+OO Qll 3 .3050E+OO BETOOE• 5. 3884£-01 

PLOT: P45D-, 32 

APHl· O.OOOOE+OO 

PLOT: P45D-, 33 

PLOT: P45D-, 34 
DATA WRITTEN ON FILE DHBT 
(IN ADDITION) 

PROGRAM HBT 

EGA , OOOOEtOO 

EPI . OOOOE+OO 

ITCH - 67 

llHARM - 20 
>IT " IT 11 
PYOLAR• l .OOOOE+OO 

AE" - S. 7538E-Ol CI 8. 4960E-01 

NEV 

BETAOE• , 7839E-01 OHSQ - 2. 5542E-03 



90-03-26 
11 :18:51 

I 
I 

1 
I 

I 
I 

\ 
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SHOT #20272, T =52.5S,IDENTC FIT 

328. ZETA CONTOURS 

-... - -- --
' , ' , ' , ' , ' , ' ' \ 

\ 

i 
I 

I 

' , 
' 

, 
' , 
' 

, 
' 

, 
' 

, 
-----

HBT, P45D272 

SHOT #20272, T =52.5S,IDENTC FIT 

1 
I 

I 

2_
00 

338. 1/ S'KSI CONTOURS, <1>=0.000 
2

_
00 

338. 2/ S'ETA CONTOURS, <1>=0.000 

1.00 .... -- - .. 1.00 

,:ti~ ... 
, 

' ~ ' , ' , ' I \ 

I I 
I 

0.00 0.00 
I Q I 

\~~/ 1 I 
I I 

\ I 

' , 
~ 

, , , 
-1.00 ' ... ___ .... , 

-1.00 

-2.00 ,__,.__ ____ .1..,,.-----.L,,-...J 

-1.00 0.00 1.00 
-2.00 '--J....,...,---~,,-------,~,.--J 

-1.00 0.00 1.00 

90-03-26 
11:18:51 HBT, P45D272 



1.00 

xo.oo 

-1.00 

-2.00 

90-03-26 
15:07:00 

so 

SHOT #20272, T =52.5S,IDENTC FIT 

34. FLOW FIELD, <1>=0.000 (CONFIGURATION ROTATED) 

. . 

-1.00 

. . . . . 

........... 

. . . .. 
/ : ... 

.. ~~- .· .· ........... .. .. ······· ... . . . . . . . . . . . . . . . . . . ... 
. . . . . . . . . . . . . 
. . . . . . . . . . . . . . 

................ 

0.00 1.00 
y 

HBT, P45D272 

2.00 
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APPENDIX G: 

INPUT OF SPLINE INPUT DATA IN HBT 

To facilitate the input of profiles and plasma cross-sections which are only known at a 

discrete set of values, HBT and HBTAS can read input files containing the B-spline coefficients 

of the spline interpolation of the discrete data points. For the interpolation of the data points and 

the creation of the input files for HBT(AS) a separate program SPLINE is provided. 

The input file with the discrete data points which is read by SPLINE must have the data 

ordered into two columns. For the equilibrium profiles, the first column must contain the 

normalized flux (see Eq. (2.4)), the column must contain the value of the specific profile. The 

range over which 'l' must be specified is 0 $ 'l' $ 1, but it is advisable to specify a larger range, 

since 'l' can become larger than 1 during the equilibrium iteration. To specify the plasma shape, 

the first column must contain a poloidal angle in degrees, where e = 0 corresponds to the 

outboard midplane of the torus. The second column must contain the radius of the plasma 

boundary measured from the geometric center of the plasma. The range of e must be at least 

0 $ e $ 360. The first six lines of the input file are not read by the program SPLINE and can 

be used for comments. The listing of SPLINE is given below. 

PR<XlRAM SPLINE 

c-----------------------------------------------------------------
c CALCULATES THE SPLINE COEFFICIENTS OF AN ARRAY OF DATA­
C POINTS (INTERPOLATION/FIT) USING THE NAG ROUTINE E02BAF 
C AND WRITES THE OUTPUT TO A FILE READABLE BY HBT 
C INPUT DATA REAO FROM : SP!JJATA TAPENO : 31 
C OUTPUT WRITTEN TO : SPLINE TAPENO : 13 
c-----------------------------------------------------------------

REAL'B PSI(l00),PRES(l00),W(l00),ZK(l00) 
REAL'B WORK1(100),WORK2(4,100) 
REAL'B C (100), SS 
INTEGER NPOINTS,NCAP7,IFAIL 
DATA (W(I),I~l,100)/100'1./ 

OPEN(31,FILE='SPLDATA') 
OPEN(l3,FILE='SPLINE') 

DO 30 I=l, 6 
READ(31, *) 

30 CONTINUE 
I~l 

40 READ(31,*,END=50) PSI(I),PRES(I) 
WRITE(*,*) PSI(I), I ',PRES(!) 
I=I+l 
GOTO 40 

50 CONTINUE 
NPOINTS ~ I-1 
WRITE(*,*) 'INTERPOLATION OR FIT? <I=l,F=2>' 
READ(*,*) NFIT 
IF (NFIT.EQ,2) THEN 

WRITE(*,*) 'NUMBER OF KNOTS?' 
READ ( *, *) NKNOT 
DO 52 I=l,NKNOT 



52 

WRITE(*,*) 'KNOT NUMBER ',I,'?' 
READ(*,*) ZK(I+4) 

52 CONTINUE 
NCAP7=NKNOT + 8 

ELSE 
DO 51 I=S,NPOINTS 

ZK(I) ~PSI (I-2) 
51 CONTINUE 

NCAP7 = NPOINTS + 4 
END IF 
IFAIL ~ 1 
CALL E02BAF(NPOINTS,NCAP7,PSI,PRES,W,ZK,WORK1,WORK2,c,ss,rrAIL) 
IF (IFAIL.NE.0) THEN 

WRITE(*,*) 'SOMETHING IS WRONG, !FAIL = ',!FAIL 
ELSE 

WRITE(13,*) NCAP7 
DO 55 I=l,NCAP7 

WRITE(l3,') ZK(I) 
55 CONTINUE 

DO 60 I=l,NCAP7-4 
WRITE(l3,*) C(I) 

60 CONTINUE 
END IF 

999 FORMAT(3X,E10.4,3X,El0,4) 
END 
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