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1. INTRODUCTION 

1.1 MHD stability and mode structure near optimum f3 values 

The latest high-/3 discharges produced at JET have reached values of f3 close 

to the maximum attainable ones with respect to MHD stability as predicted by 

the Troyan limit to external kink modes and the Sykes-Wesson limit for ballooning 

modes. These values of f3 were reached in double-null x-point configurations during 

the H-mode phase. Similar results were obtained in single-null discharges, although 

with reduced values of (3. In view of the future pumped divertor upgrade of JET 

it is of interest to compare in detail discharges in double and single-null x-point 

configurations with respect to the MHD stability limits and to investigate the 

modes structure at high /3. 

The necessary numerical tools have recently been developed and applied to 

JET data. For the purpose of studying ideal ballooning and kink modes at high 

/3, the numerical code HBT (for High-/3 Tokamak) and its up-down asymmetric 

successor HBTAS have been installed at JET by G.T.A. Huysmans, R.M.O. Gal

vao, and J.P. Goedbloed [Huysmans89,90a,90b, and 91]. These codes have been 

extensively exploited in a systematic investigation of the ideal MHD f3 limits un

der the contract JT9/9003. An extension of these studies to non-ideal modes and 

the possibility of discriminating between ideal and resistive modes was the next 

relevant step. This step could be made by means of the new resistive spectral code 

CASTOR (for Complex Alfven Spectrum in TORoidal geometry), developed by 

W. Kerner, J.P. Goedbloed, S. Poedts, and E. Schwarz. This code solves for the 

full spectrum of resistive modes in toroidal geometry. Whereas HBT is based on 

ideal MHD, and has been specifically designed for fast parameter scans, CASTOR 

is based on resistive MHD and has the potential of incorporating other dissipative 

effects as well. Hence, it is important to operate the two codes in conjuction. 

The comparison of the computed normal modes with the experimental and diag

nostic data should help detecting possible destruction of magnetic surfaces, which 

is the major effect of resistive instabilities. It should also be stressed that the 

experimental situation requires analysis of free-boundary modes. 
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1.2 Purpose of the investigations 

With the above considerations in mind, we have carried out two main inves

tigations, viz.: 

i) extension of the new resistive spectral code CASTOR with an external 

vacuum and interfacing this code with the equilibrium identification code 

IDENTD; 

ii) investigation of ballooning modes, edge localised modes, and resistive kink/ 

tearing modes in high-,B and divertor discharges exploiting the numerical 

codes HBT and CASTOR. 

In addition, it turned out to be necessary to develop an accurate, state-of

the-art equilibrium code to match the accuracy and flexibility of the CASTOR 

code. This code was called HELENA (for Hermite Elements Equilibrium solver 

for Normal-mode Analysis). Together, the two codes HELENA and CASTOR 

form a very powerful stand-alone tool to investigate resistive MHD phenomena in 

tokamaks. 

Since these codes were also transformed into similarly powerful programs to 

study astrophysical problems, used by a group of scientists of the FOM-Instituut 

voor Plasmafysica (Nieuwegein, the Netherlands), the Astronomical Institute of 

the Katholieke Universiteit Leuven (Belgium), and the Max-Planck- Institut fiir 

Plasmaphysik (Garching, Germany), a set of extremely useful auxiliary tools used 

by this group were also installed at JET. This concerns the package REVISE, de

veloped for the purpose of enabling the exchange of numerical programs which are 

in a constant state of development, and the plotting library PPPLIB (for Plasma 

Physics Plotting), which is a completely portable and very easy to use standard 

FORTRAN library containing all of the plotting routines needed in CASTOR. 

Finally, during the course of the present investigations interest in a special 

class of modes arose, the so-called gap modes, which could very effectively be inves

tigated by means of CASTOR and a special auxiliary code CSCAS (for Continuous 

Spectrum associated with CASTOR) developed by S. Poedts (associated with the 

Max-Planck-Institut fiir Plasmaphysik until 1/10/91) and W.O.K. Kerner. Since 

these modes offer an additional insight in the spectrum of magnetohydrodynamics, 

which is at the basis of all resistive phenomena of interest to JET, we decided to 

add this material to the report. 

Whereas the stress of the main text of the report is on the physics embodied 

by the two points i) and ii) mentioned above, the description of the complete set 
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of numerical tools REVISE, PPPLIB, HELENA, CASTOR, and CSCAS is given 

in the appendices. Although this technical material is relegated to the appendices, 

it should be pointed out that the installation of these tools at JET facilitates an 

effective new way of collaboration between physicists at JET and in the associa

tions. 

1.3 Review of the report 

In Section 2 the background material is given on the resistive MHD spectral 

calculations with the CASTOR code. Section 3 describes the computation of the 

equilibrium by means of HELENA. 

To enable the calculation of free boundary resistive modes in axisymmetric 

toroidal equilibria, we have implemented the ideal and resistive boundary condi

tions at the plasma vacuum intnface in the CASTOR code. The boundary con

ditions, their implementation, and the required solution of the vacuum magnetic 

field equations are described in Section 4. 

In Section 5, we apply the numerical codes described in the Sections 2, 3 and 

4. The first part of Section 5 deals with the pressure dependence of the tearing 

mode stability. A comparison is made between the pressure dependence of fixed 

and of free boundary tearing modes in a toroidal geometry. In the second part 

we investigate the influence of an X-point on the stability properties of resistive 

modes which are localized near the edge of the plasma. 

In Section 6, the stability properties of actual JET discharges are analyzed. 

Here, we focus on the resistive stability of equilibria during the H-mode phase 

where edge localized modes (EL Ms) have been observed and we try to establish 

the relevance of free boundary resistive modes. 

Section 7 is concerned with another aspect of the MHD spectrum of toka

maks, viz. the damping of global Alfven waves due to resonant absorption. 

Finally, technical details and additional material on the computational pro

cedures is found in the appendices. 
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2. LINEAR RESISTIVE MHD; NUMERICAL SOLUTION 

2.1 Resistive MHD equations 

One of the simplest self consistent models for the description of large scale 

motions of a hot plasma is given by the resistive magnetohydrodynamic (MHD) 

equations. In this model the plasma is described as a conducting fluid embedded in 

a magnetic field. The relevant variables for the description of the plasma behavior 

are the density, the pressure, the fluid velocity and the current density (p, p, v 

and j) and the electric and magnetic field ( E and B). The time evolution of the 

system is determined by four fluid equations: 

the continuity equation expressing the conservation of mass: 

op 
at +V•(pv)=O, (2.1) 

the momentum equation: 

dv ....., . 
p dt = - v p + J x B , (2.2) 

the energy equation: 

1 op 1 I ·2 
---=---v•Vp---pV•v+riJ, 
1-lat 1-1 1-1 

( 2.3) 

and Ohms law: 

ryj=E+vxB. (2.4) 

The system is completed with three electromagnetic equations, Faraday's law, 

Ampere's Law and the condition on the divergence of B: 

8B 
- = - V x E (2.5) 
at ' 

µ0 j = V x B, (2.6) 

'V'·B = 0. (2.7) 

Here, ry is the resistivity, µ0 is magnetic permeability, and I is the ratio of the 

specific heats. In the electromagnetic equations, the displacement current has been 

dropped. This eliminates electromagnetic waves from the system. Consistently, 

space charge effects are neglected in the momentum equation. The important 

difference with the ideal MHD equations is the ryj term in Ohms law. The effect 
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of this term is to allow a finite electric field parallel to the magnetic field. This 

implies that the magnetic flux is not conserved and the magnetic field lines are 

allowed to break. We have neglected the ohmic dissipation in the energy equation. 

Other non-ideal terms, as for example a finite heat conductivity or viscosity, can 

be added to the equations but will not be discussed here. 

The resistive equations as given by Eqs. (2.1) - (2.7) can be made dimen

sionless by normalizing the space coordinate, the magnetic field, the density, and 

the velocity: 

- B 
B=

BM' 

p 
p=-, 

PM 
with V2_ B~ 

A---. 
µoPM 

(2.8) 

Here, RM,PM· and BM are the major radius, the density, and the toroidal field 

at the position of the magnetic axis. The velocity is normalized with the veloc

ity of the Alfven wave also on the magnetic axis. For the other quantities the 

normalization amounts to: 

t 
t= -

TA 
with 

- µop 
p= -2-, 

BM 

(2.9) 

Dropping the displacement current and the space charge effects changed the evo

lution equations of the electric field and the current density into expressions which 

determine E and J directly from the velocity and the magnetic field. Eliminat

ing E and J from the system, we are left with four evolution equations and one 

condition on the magnetic field: 

ap 
at=-V'-(pv), 

dv 
pdt = -V'p + (V x B) x B, 

an 
at =V'x(vxB)-Vx(l)V'xB), 

aT 
P[jf = -pv•V'T- (1- l)pTV'·v, 

V'·B = 0. 

(2.10) 

where we have dropped the tildes of the normalized quantities. The pressure has 

been replaced by the temperature by using the ideal gas law p = 'RpT. This 

is done for the convenience of future extensions like, for example, a finite heat 

conductivity. 
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The form of Eqs. (2.10) is not very suitable for the numerical calculation of 

the time behavior of a resistive plasma because the condition V•B = 0 has to be 

treated separately from the other equations. The condition can be dropped if we 

use the vector potential 

B=VxA (2.11) 

instead of B itself. The gauge is set by taking the scalar potential zero. 

The set of equations (2.10) describes the full non-linear time evolution of 

a resistive plasma. The equations describing the linear stability are obtained by 

expanding the equations around an equilibrium. Substitution of 

p =Po+ P1(t), 

B =Bo +b(t), 

T =To+ T1(t), v = v 1(t), 

A=Ao+A1(t) with b(t)=VxA1(t), 

yields the equilibrium equations for a static equilibrium: 

Vpo = (V x Bo) x Bo, V x ( '7 V x Bo) = 0 . 

(2.12) 

(2.13) 

It is evident that, with the exception of some special cases, no static equilibrium 

can exist in resistive MHD. By assuming the equilibrium to be static, we ignore 

velocity terms of the order of the resistivity. This inconsistency can give rise to 

resistive modes with a growth rate of the order of the resistivity diffusion time, 

rn = RM /1). However, the growth rate of typical resistive instabilities scale with 

a fractional power of the resistivity, ~ for resistive interchange modes and t for 

tearing modes. So for the small '7 values ( '7 ~ 10-s - 10-9
) relevant in present 

day tokamaks, the time scale of the diffusive modes is much slower than the time 

scale of the relevant instabilities. 

The numerical solution of the ideal static equilibrium equations is discussed 

in detail in Chapter 3. 

The equations describing linear perturbations of the equilibrium are obtained 

by substitution of Eq. 2.12 in Eq. 2.10 which yields: 

6 

Ap1 = - V •(pov1) 

Apov1 = -V(poT1 + p1To) 

+ (V x Bo) x (V x Ai) - Bo x (V x V x A 1 ) 

ApoT1 = -pov1 • VTo - (! - l)po V •V1 

+ 21)(/ - l)(V x Bo)•(V x V x A 1 ) 

>.A1 =-Box v1 - l)V x V x A1 

(2.14) 
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where the time dependence of the linear perturbations is taken to be ~ e>.t. The 

eigenvalue A can, in general, be complex. 

The numerical solution of the eigenvalue problem of Eqs. (2.14), as imple

mented in the CASTOR code, is discussed in the next section. 

2.2 The CASTOR code 

In this section we will describe the methods used for the numerical solution 

of the resistive MHD eigenvalue problem as implemented in the CASTOR code 

[Kerner91]. The CASTOR code was developed by W. Kerner and J.P. Goedbloed. 

In CASTOR, the same numerical techniques are used as in an earlier code which 

solved the resistive MHD equations in a cylindrical geometry [Kerner85]. There, 

both the equilibrium and the eigenfunctions are a function of the radial coordinate 

only. In CASTOR, the linearized resistive MHD equations (2.14) are solved in a 

general toroidal geometry, where the equilibria are assumed to be axisymmetric. 

Due to this symmetry, the dependence on the toroidal angle can be described 

with one toroidal mode number, u( R, Z, <P) = u(R, Z)ein<f>. The eigenfunctions are 

essentially two dimensional. 

We will start this section with a general description of the Galerkin method. 

Then the coordinate system, the discretization of the variables, and the resulting 

matrices are discussed. Finally, we will mention the methods used for the solution 

of the non-Hermitian matrix eigenvalue problem. 

2.2.1 The Galerkin method 

For the numerical solution of the eigenvalue problem (2.14) we rely on the 

Galerkin method [Strang and Fix 73, Schwarz 84]. This method, described below, 

can be considered to be the natural extension of the Ritz variational method to a 

more general class of equations including dissipative problems. 

Defining the state vector: 

(2.15) 

the system of equations (2.14) can be written in the matrix form: 

LU=.ARU, (2.16) 

where Land Rare differential operators. A weak form of Eqs. (2.16) is constructed 

by multiplying the set of equations (2.16) with an arbitrary test function V and 
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integrating over the domain of interest, the plasma interior: 

J V LU dV = ,\ J V RU dV . (2.17) 

U is a solution of (2.16) in the weak sense, if Eq. (2.17) is satisfied for an arbitrary 

V satisfying the appropriate boundary conditions. 

In CASTOR, we use the same functions for the test functions V in the weak 

form (2.17) as will be used in the discretization of U. So, if the k'h component of 

U is approximated by: 

N 

Uk~ u-k _" khk( l _ -Dalir, 
j=I 

( 2.18) 

where N is the total number of expansion functions, the following set of equations 

is obtained for the coefficients aj: 

for j = l,N. (2.19) 

The second order derivatives in the radial coordinate in L can, in the weak form, be 

reduced to first order derivatives by partial integration. This implies that the test 

functions V must satisfy the same essential boundary conditions as the solution 

vector U [Strang and Fix 73]. Since the weak form only contains first order 

derivatives, the essential boundary conditions will be conditions on the function 

values, whereas conditions on the first order derivatives will be natural boundary 

conditions. The natural boundary conditions must not be implemented in the 

test functions or the solution vector. They are implemented by substituting the 

conditions into the weak form. 

2.2.2 The coordinate system 

The behavior of the MHD equations in the direction normal to the flux 

surfaces is very different from the in-plane direction. The ideal MHD equations 

exhibit a singularity in the direction perpendicular to the flux surfaces. In resistive 

MHD these singularities are resolved but the modes still show large gradients near 

an ideal singular surface. So, for an accurate representation of the mode structure 

it is essential to use a coordinate system with a function of the flux as a radial 

coordinate. The two other coordinates can be chosen freely. Here, we take the 

two angular coordinates such that the magnetic field lines appear straight. This 

ensures that the B· V operator is accurately represented [Harley90]. With this 
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choice we still have the freedom to choose one of the angular coordinates. If one 

of the angles is taken to be the usual toroidal angle ¢> of the ( R, Z, ¢>) coordinate 

system, then the poloidal coordinate of the straight field line system, 0, must be 

determined such that the field lines are straight in the ( 0, ¢>) plane, i.e.: 

def>/d(J = q('lj;). 

The contravariant and covariant basis vectors are then defined by: 

a 1 =Vs, 

a 2 =VO, 

a 3 =V¢>, 

ai =JV(} x Vef>, 

az =JV¢> x Vs, 

a3 = JVs x VO, 

(2.20) 

(2.21) 

where the radial coordinates is given by V'lj; = f(s)Vs, J is the Jacobian of the 

( s, 0, ¢>) coordinate system. The metric coefficients 9ii and 9ij are given by: 

9 12 =Vs· VO 

922 = 1vo12 

933 = IV ¢>12 = ~2 

J2 
911 = R2 1vo12 

J2 
912 = --Vs·VO R2 

J2 
922 = R 2 IV s! 2 

933 = R 2 

In this coordinate system, a field line can be represented by: 

di"' = .j933d¢> 
div - ,;g.ii.dO 

(2.22) 

(2.23) 

where B<P and Bp are the physical components in the toroidal and poloidal direc

tion. Using (2.20), we obtain an expression of the poloidal arclength in terms of 

the angle 0: 

and an expression for the Jacobian: 

fqR 2 

J--- F . 
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2.2.3 Projections and discretization 

The variables used in the numerical solution of the eigenvalue problem are 

defined by the following definitions. For the velocity, the following representation 

is chosen: 

R2 R2 R2 
v = -

1 
ii1a1 + -.-ii2a2 + ..,-f ii3B. 

zJ I 
(2.26) 

The representation of the perturbed vector potential is basically covariant: 

.- I - 2 - 3 
A = -zA1 a + Aza + A3a . (2.21) 

The perturbed density and temperature are multiplied with s 

P1 = sp1, ( 2.28) 

The eight variables (Pi, ii1, ii2, iJ3, T1, A1, A2, ;13) are functions of both the s 

and the 0 coordinate. Each variable is approximated by a Fourier series in the 0 

coordinate and a finite element interpolation in the radial direction: 

( (} "') ~ - _ ~ k,p h ( . ) im8 in</> Uk s, , 'P - Uk - L....t am,j p,k s - s1 e e . (2.29) 
m,J,p 

Here, k labels the eight variables, m labels the Fourier harmonics and j is the 

index for the radial grid points. The index p labels the different interpolating 

functions at one radial node. For example, for linear elements there would be only 

one interpolating function on each node, for cubic Hermite elements there are two 

functions. 

For ideal MHD codes, it was found [Gruber and Rappaz 85] that the Alfven 

continuum modes are not well represented unless a specific choice is made for 

the finite element discretization of the velocity perturbation. If the same type of 

elements are used for the three components, so-called spectral pollution can occur. 

Due to numerical errors, the Alfven modes couple to the fast magneto- acoustic 

modes. This leads to spurious eigenvalues in the Alfven continuum. The artificial 

coupling to the fast wave can be avoided by interpolating the ii 1 component with 

a finite element which is one order higher than for ii2 and ii3 . If, for example, 

ii1 is interpolated with linear finite elements, the ii2 and v3 components should be 

interpolated with piece wise constant elements. This ensures that in the divergence 

of v the same order polynomials appear, such that the divergence of v can cancel 

exactly. 
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In CASTOR higher order elements are used. The variables that have to be 

differentiated, iJ1, A2 and A3, are represented with cubic Hermite finite elements 

such that both the variables and their derivatives are continuous. Quadratic ele

ments are used for the other variables, p, v2 , v3 , T and A 1 . 

On an interval, Sj < s < SJ+ 1 , the cubic Hermite elements are given by: 

Hj,I = -(~)3 (s - s1+il2(3s1 - s1+ 1 - 2s), 

Hj,2 = (~)2(s-s1)(s-si+i)2 , 

Hj+1,1 - (~) 3 (s - s1)2(3si+I - Sj - 2s), 

H1+1,2 - (~) 2 (s-s1)2 (s-s1+1), 

where d = (sj+I - s1). The quadratic elements are given by: 

hj,I = (~) 2 2(s - s1+1/2)(s - s1+il, 

hj,2 = -0)2 4(s - s1)(s - s1+il, 

hj+1,1 (~)22(s - s1)(s - Sj+1/2), 

hj+1,2 = 0. 

(2.30) 

(2.31) 

The zero fourth quadratic element is added so that cubic and quadratic elements 

can be treated the same in the code. The coefficients of the cubic Hermite elements 

interpolation are determined by the values of the function and the first derivative 

at the nodes, the coefficients of quadratic elements by the function values at the 

nodes and at the midpoint between the nodes. 

fc(s) = f(s1)H1,1(s) + J'(s1)H1,2(s) 

+ f(s1+1)H1+1,1(s) + J'(s1+1)H1+1,2(s), (2.32) 

fq(s) = f(s1)h1,1(s) + f(sj+1/2)h1,2(s) + f(si+i)h1+1,1(s). 

2.2.4 The matrices 

Using the discretization of (2.29), and representing the equilibrium quantities 

in J Lk,k as a Fourier series, the weak form of Eq. (2.19) can be written as: 

J// hi,Pe-imO _ 2-:= _ ~( J Lk,k )1e'18 a~~1 h{,,,ei"' 8 dsdBd<f> = ,\(RHS), 
k,p,m,J 

(2.33) 

where J is the Jacobian (Eq. 2.25) and Lk,k is an element of the matrix L as 

defined in Eq. 2.16. The k'h equation is multiplied with the corresponding finite 
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element, i.e. the equations for Pl, v2, v3 and T1 are multiplied with a quadratic 

element and the equations for vi, A2 and A3 with a cubic Hermite element. The 

number of test functions, h1k: e-ime, is the same as the number of unknowns ok,p_. 
,p m,J 

The total number is 2 X 8 x M x Nr, where Mis the number of Fourier harmonics 

and Nr the number of radial points. The right hand side of the equation, is similar 

to the left with the Lk,k replaced by Rk,k. 

After integration in the two angles (} and <P the weak form becomes : 

J h~P '°' (JLk,k)(m-m)ok,fi_h1k= _ds = >.(RHS). ' L....t m,J ,p 
k,p,m,) 

(2.34) 

Due to the local basis of the finite elements, the integrand is nonzero only for 

neighboring grid points. At each grid point there are 2 different interpolating 

functions and M harmonics. Because the equilibrium quantities in ( J Lk,k ), in 

general, contain many Fourier harmonics, the integrand is non-zero for every com

bination of m and m. The resulting structure of the matrices A and B is shown 

in Fig. A.l. For every radial interval, there is a full block (ZMA). Each of the four 

blocks in the ZMA matrix is again divided into 8 by 8 sub-blocks, 8 rows for each 

the equations and 8 columns for the different variables. Each sub-block contains 

the M harmonics and 2 interpolating functions. The final form of the elements of 

the matrices A and B is given in Appendix A.2. 

2.2.5 Boundary conditions 

In deriving the matrix elements (A.l)-(A.16), the momentum equation and 

the equations for the vector potential have been partially integrated. This yields 

extra surface integrals over the plasma boundary. From the normal component of 

the momentum equation we obtain the boundary term: 

(2.35) 

where II1 is the total perturbed pressure, II1 = p1 + Bo•b and n is the normal 

pointing out of the plasma boundary. The induction equation yields: 

JI ryA* x V' x A 0 ndS. (2.36) 

The symbols v* and A• should not be mistaken for the complex conjugate of the 

physical variables v and A. Instead they represent the test functions, i.e., the type 

of finite elements used in the construction of the weak form. 
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The resistive MHD equations are of sixth order in the radial coordinate. 

Thus, we need to specify six boundary conditions to fully determine the system. 

When the plasma is surrounded by an ideally conducting wall at the plasma bound

ary, the normal component of the velocity, the normal magnetic field, and the 

tangential electric field must go to zero at the wall: 

V•nlwall = 0' 

B•nlwall = 0' 

Exnlwall=O. 

(2.31) 

In terms of the variables used in the CASTOR code, the boundary conditions are: 

Vi I wall = O' (2.38) 

In the plasma center, the boundary condition are a consequence of the regularity 

conditions on axis: 

v I - o 1 axis - ' A I = 0 2 axis ' 
Aal . = o. axis 

(2.39) 

With an ideally conducting wall on the plasma boundary, all boundary conditions 

are essential boundary conditions. They must be applied to both the variables 

and the test functions. In CASTOR, the conditions are implemented by removing 

the rows and columns of the matrices corresponding to the variables and the test 

functions of ii1, A2 and ..43 at the wall and ii1, A2 and Aa in the center. Note that 

the boundary terms of Eqs. (2.35) and (2.36) are zero in this case. 

The boundary conditions in the case where the plasma is surrounded by a 

vacuum and an ideally conducting wall is discussed in Chapter 4. 

2.2.6 The solvers 

The Galerkin formulation of the resistive MHD eigenvalue problem, described 

111 section 2.2.1, leads to a complex non-Hermitian matrix eigenvalue problem. 

For the numerical solution of this eigenvalue problem several solvers have been 

implemented. The numerical methods in non-Hermitian eigenvalue problems have 

been reviewed by Kerner [Kerner89]. 

The complete spectrum of eigenvalues can be calculated using the standard 

QR algorithm of the LINPACK library. A major disadvantage of the QR algorithm 

is that it transforms the banded matrices into full matrices. The corresponding 

memory requirements limit the application of the QR algorithm to relatively small 
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problems where the number of harmonics and radial grid points is low. In, for 

example, 32 Mwords of memory, the maximum number of Fourier harmonics times 

the number of radial points, M x Nr, is about 175. 

For the study of the stability of the eigenmodes, the complete spectrum con

tains far to much information and one is only interested in the one or two largest 

positive eigenvalues. In those cases, the inverse vector iteration algorithm can be 

used to calculate single eigenvalues. The vector iteration conserves the band struc

ture and therefore allows much larger problems to be treated. The implementation 

of the algorithm in the CASTOR code requires roughly 6 x (16111)2 +9x ( 16M)) x Nr 

Mwords of memory. So, 32 Mwords is sufficient for, for example, 101 radial points 

and 12 Fourier harmonics. For very large problems which do not fit into central 

memory, an 'out of core' solver is available which reads/writes parts of the ma

trices to disk. A disadvantage of the inverse vector iteration algorithm is that a 

fairly accurate initial guess has to be supplied in order to find an eigenvalue. In 

typical applications the initial guess must be given within a factor of two to three 

of the actual eigenvalue. In parameter studies, where the eigenvalue is determined 

as a function of, for example, the resistivity this is less of a problem. 
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3. THE EQUILIBRIUM 

In the previous section, it was shown that in resistive MHD the equilibria 

cannot be static but must have a small but finite flow in order to satisfy the resis

tive equilibrium equations. When a static equilibrium is used for the calculation 

of the resistive eigenvalues, the influence of the inconsistency of the equilibrium 

on the eigenvalue will be of the order of '//· Also, additional modes will arise, 

with eigenvalues scaling like .,.,- 1 representing the resistive diffusion of the static 

equilibrium. However, the growth rates of typical resistive instabilities scale with 

a fractional power of the resistivity, and will, for small '//, be much larger than 

the growth rate of the diffusive modes. For these modes, the influence of '// on 

the equilibrium is small and the equilibrium can be considered static. Since our 

interest is mainly the unstable side of the resistive spectrum of eigenmodes, we 

will, from here on, assume the equilibrium to be static. 

In calculating the eigenmodes of a given equilibrium, the actual eigenvalue 

usually is the result of a cancellation of the stabilizing and destabilizing terms 

yielding an eigenvalue which is small compared to the equilibrium terms involved. 

For example, in calculating the stability of the m/n = 1/1 internal kink mode in 

a circular plasma, the growth rate is determined by equilibrium quantities which 

are of the fourth order in the inverse aspect ratio. Thus, for a reliable calculation 

of the growth rate, the accuracy of the equilibrium quantities must be very high. 

Especially near marginal stability, where the growth rates become very small, the 

minimum growth rate that can still be resolved is determined by the numerical 

accuracy of the equilibrium. 

In this section, we will describe the method used for the numerical solution 

of the equilibrium equations [Huysmans90] for the purpose of calculating the equi

librium quantities needed in the toroidal resistive stability code CASTOR. It will 

be shown that using bicubic isoparametric Hermite finite elements in the solution 

of the equilibrium problem yields very accurate solutions. Adjusting the positions 

of the elements such that in the final solution the element boundaries coincide 

with flux surfaces greatly facilitates the calculation of the flux surface quantities 

needed for the stability calculations. 

3.1 The Grad-Shafranov equation 

The equations describing the static equilibrium of an ideal plasma are given 
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by force balance, Amperes law, and the condition of vanishing divergence of the 

magnetic field: 

J x B == Vp, µoJ = V x B, V·B=O. (3.1) 

In a toroidally symmetric configuration, the last equation allows for the introduc

tion of a scalar field 1/; such that the magnetic field can be represented by 

B =Vi/; x V¢+FV¢, (3.2) 

where¢ is the toroidal angle of the cylindrical (R, Z, ¢) coordinate system (sec 

Fig. 3.1) and F is an arbitrary function. Since B 0 Vij1 == 0, field lines lie on 

surfaces of constant 1/;. The function 1/; represents the poloidal magnetic flux. The 

current density can then be written as 

J = -!::>.*1/;V¢ +VF x V¢, (3.3) 

where the operator !::>.* is given by 

(3.4) 

The well known Grad-Shafranov equation is obtained from force balance in the 

direction of V 1/;: 

(3.5) 

From force balance one can also derive that both Vp x V1/1 = 0 and VF x 

Vi/; = 0, i.e., both p and Fare a function of 1/; only. 

The formulation of the equilibrium problem contains two trivial scaling pa

rameters, viz. the vacuum magnetic field B0 at the geometric center of the plasma 

and the scale length a, the minor radius of the plasma boundary. They provide 

the dimensions of the physical quantities but do not enter otherwise. Similarly, 

the total poloidal flux, 27r1/;1 only enters as a scaling parameter normalizing the 

J.p and B.p profiles. This scaling is accounted for by the parameter a = a2 Bo/1/•1. 

The two profiles p and F are then normalized by 

- az 
p(l/;)=( Bz)p(l/;), 

E 0 
(3.6) 

where 1/; is the normalised flux, 1/; = 1/;/1/; 1 , Ro is the major radius of the plasma, 

E = a/ Ro, and 1/>1 and is the poloidal flux at the plasma boundary. In addition, 
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Fig. 3.1 The tokamak geometry. 
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the (R, Z) coordinate system is changed to a (x, y) coordinate system centered in 

the plasma, where x = (R - Ro)/a and y = Z/a. 

In order to separate the shape of the two input profiles, p({i) and FF'({i) 

from the amplitude, we define two unit profiles which are normalized to one on 

the magnetic axis ( {i = 0) : 

~ ABII( {i) = -p'( {i) 

Ar({i) = -~(p'({i) + PP'({i)). 
f 

(3. 7) 

The amplitudes of the two input profiles are given by the quantities A and B. 

However, only B is an input quantity. The value of A is determined by the 

condition that {i = 1 on the plasma boundary. The definition of the II( ,P) and 

f( ,P) profiles is the same as is used in the HBT equilibrium and stability code 

[Goedbloed81]. 

The boundary condition to be imposed on the solution of Eq. (3.5) depends 

on the type of application. In the stability calculation, no information is needed 

beyond the plasma boundary. In that case, the appropriate boundary condition 
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ts 1/JB = 1 where 1/JB is the flux at the boundary of the computational plane, 

the plasma boundary. In the problem of the reconstruction of an equilibrium 

given by some measurements of the flux and the poloidal field on a contour C 

outside the plasma (a free boundary problem) the boundary condition changes 

to 1/Jc = cf>( 11)measured. In the case of up-down symmetry in the poloidal plane, 

when the G-S equation has to solved only in the upper half of the ( x, y) plane, an 

additional condition appears along the x-axis: V1/;•n = 0, where n points normal 

to the x-axis. 

The solution, 1/;(R, Z), of the Grad-Shafranov equation (3.5) within a given 

shape of the plasma boundary and a given functional dependance of J) and P 
on 1/;, will describe the complete equilibrium. It can be shown that the solution 

1/;( R, Z) consists of closed surfaces, which, for typical fusion plasma parameters, 

are centered around the magnetic axis, where Bp = 0. 

The equilibrium quantities needed as input for the toroidal resistive eigen

value code CASTOR are primarily the metric coefficients, g;i, of the straight field 

line coordinate system ( s, iJ, ¢ ). The metric coefficients are given by: 

g12 = Vs 0 ViJ, 
1 

( 3.8) 

The coefficients have to be calculated on a grid of ( s;, iJ j) values. The positions of 

these grid points can be calculated with: 

s=~, Ff, di 
iJ(l1) = q .µ RIV1/JI. (3.9) 

Note that the definition of s specifies the function f in Eq. (2.21) as f = 2s1/;1. 

The evaluation of the metric requires line integrals over surfaces of constant 1/• with 

V 1f; in the integrand. Therefore, both V' and V 1f; have to be known accurately. 

In the next section it is shown that using cubic Hermite elements both for the 

discretisation of the computational plane and for the solution 1/', yields a very 

accurate representation of 1f; and V1f; with a continuous representation of the field 

lines. 

18 The Grad-Shafranov equation 



3.2 lsoparametric bicubic Hermite elements 

The demands on the accuracy of the solution ,P and V ,P suggest the use of 

a higher order finite element in order to avoid the very large number of elements 

and associated matrices which would be needed to obtain the required accuracy 

with, e.g., linear elements. Bicubic Hermite elements allow for a representation of 

,P(x, y) such that both i/! and Vi/! are continuous across element boundaries. The 

interpolating functions of the bicubic Hermite element are given by [Zienkiewicz'il] 

1 2 2 
Hoo(x, y) = 

16 
(x + xo) (xxo - 2)(y +Yo) (yyo - 2), 

1 2 2 
Ho1(x,y) = -

16
xo(x + xo) (xxo - l)(y +Yo) (YYo - 2), 

1 2 2 
H1o(x,y) = -

16
(x + xo) (xxo - 2)yo(Y +Yo) (YYo -1), 

(3.10) 

1 2 2 
Hu(x,y) = 

16
xo(x + xo) (xxo - l)yo(y +Yo) (yyo -1), 

where Xo and Yo are the coordinates of the four corners of a unit element 

(-1,-1), (-1,1), (1,1) and (1,-1). A function f(x,y) inside the element is then 

approximated by: 

of 
f(x,y) = LHoo(x,y)f(xo,Yo)+H1o(x,y)

0
x(xo,Yo) 

of 02 f + Ho1 (x, y) ..,,--( xo, Yo) + H11 ( x, y) ""(.To. Yo). 
uy uyux 

(3.11) 

where the summation is over the four corners of the element. However, with the 

elements directly defined in (x, y) coordinates it is impossible to approximate the 

shape of the plasma boundary accurately or even continuously. One way around 

this problem is to define the elements in a 'polar' coordinate system such that the 

plasma boundary coincides with a coordinate line [Liitjens90]. Another possibility, 

exploited here, is the use of an isoparametric mapping. This local approach allows 

for a more flexible placement of the nodes. The present approach is a generalization 

of [Kerner84], which was concerned with linear and quadratic elements, to bicubic 

Hermite elements. 

With isoparametric elements the problem is formulated in a coordinate sys

tem (s, t) which is local to each element (as illustrated in Fig. 3.2). In this element 

the solution ,P and both original coordinates x and y are represented by the same 
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Fig. 3.2 The isopararametric mapping of one finite element. 

interpolating functions: 

,P(s, t) = L HooiPso,to + H10 aif;8~' 10 

so ,to 

( t) '"" H H aXs0 ,t0 
x s, = L ooXso,to + 10 as 

sa,to 

( t) '"" H H ayso,to Y s, = L ooYso,to + 10 as 
80, to 

+ H a1/Js 0 ,t0 

o1 at 

H ax, 0 ,t0 

+ o1 at 

+ 
H ays0 ,t 0 

o1 at 

+ H a21/Jso,io 
11 asat , 

a2 
+ H Yso,to 

11 osot 

(3.12) 

In order to obtain a discretization of the computational ( x, y) plane in which 

x and y and their derivatives are continuous, all that is needed is a prescription 

of the values of :r, ox/os, ox/at and a2 x/as0t (and similarly for y) at the nodes 

of the elements. In [Frind77] the length of the element boundary was used to 

estimate the values of ax/as and ax/ot. This, however, destroys the continuity 

of V?j; across the elements, leaving continuity only at the nodes. 

A different approach, which is followed here, conserves all the good properties 

of the cubic Hermite element. We approximate the given radius of the plasma 

boundary by a Fourier series: 

(3.13) 
m 

where () is a polar angle. With this boundary representation, a global coordinate 

system is constructed: 

20 

x = v(r)aB(B) cos(), 

y = v(r)aB(B) sin(), 
(3.14) 
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where the radial coordinate v is an arbitrary function ranging from 0 in the center 

to 1 on the boundary. By identifying the local coordinates with the global v(r) 

coordinate, i.e. s = s(v), and t with 0, the values of ax/as, ox/at and o2 x/osot 

can be calculated. By this construction, x and y are continuously known in the 

poloidal plane. The resulting finite element discretization of the computational 

plane within a typical plasma boundary is shown in Fig. 3.3a. 

3.3 Solution of the Grad-Shafranov equation 

The Grad-Shafranov equation can now be solved using the Galerkin method 

(as in section 2.2.1). The weak form for the Grad-Shafranov equation is given by: 

(3.15) 

With the discretisation of x, y, and 7/J of Eq. (3.12), this leads to a system of linear 

equations for each step of the non-linear iteration: 

(3.16) 

with 

K;j =JI H;(s, t)D.* H1(s, t)J ds dt 

= - JI~ V H;(s, t)• V H1(s, t)J ds dt, (3.17) 

b; =JI ~H;[R2 P'(i/Jn)+ ~F21 (1/Jn)]Jdsdt, 

where J is the Jacobian a(x, y)/a(s, t), and the functions H; are the interpolating 

functions. The boundary terms arising in the partial integration of the /;;.* operator 

in K vanish when the boundary conditions, i/JB = 1 and "ili/J•n = 0, are applied. In 

this way the boundary conditions are implemented as natural boundary conditions. 

The integration is done numerically using a 4 by 4 point Gaussian integration 

scheme. The resulting matrix K is positive definite and has a size of 4NrNp 

by 4NrNp where Nr and Np are the number of radial and poloidal grid points, 

respectively. The matrix K consists of one main diagonal of width 16 and one off

diagonal, also of width 16 and separated by 4(Np - 2) zeros. The structure of this 

matrix is partly spoiled when the boundary conditions are included in the matrix. 

The matrix is therefore stored without the boundary conditions in a compact form 

(storing only the non-zero elements). 
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Fig. 3.3a The initial 'polar' grid of bicubic isoparametric flnite elements. 
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The set of linear equations is solved iteratively with a conjugate gradient 

method [Hageman81). The matrix K is conditioned with its diagonal elements, 

which improves the convergence rate considerably. In the iterative solution only 

the inner product of K with a vector is needed. At each evaluation of an inner 

product the boundary conditions are included. The memory requirements are low: 

the code uses approximately 120NrNp words of memory. Another advantage of 

the iterative solution is that the solution of the previous step of the non-linear 

iteration can be used as a first estimate. 

3.4 The mapping 

A big advantage of the isoparametric mapping is that during the iteration 

of the non-linear Grad-Shafranov equation (3.5), the grid of finite elements can be 

adjusted to the non-converged solution obtained so far. If the local s coordinate is 

identified with some function of ,P, the values of 8x / 8s, 8x / 8t and 82 x / 8s8t can 

be calculated from ,P(x, y). The final solution will then have the finite elements 

aligned on the surfaces of constant ,P and centered with respect to the magnetic 

axis. An example of a flux surface grid is shown in Figure 3.3b. 

In this way, the result of the grid adjustment is an 'inverse' representation of 

the solution, i.e. both x and y are known as a function of ,P and a poloidal angle t 

instead of the usual representation of the solution ,Pas a function of .T and y. This 

greatly facilitates the calculation of the metric coefficients of the straight field line 

coordinate system (s,19, </>). To determine the positions of the grid points (s;,19j) 

at which the metric is to be evaluated, the values of 19, 819 / 8s, 819 / 8t and 82 19 / 8s8t 

are calculated at the finite element nodes of the flux surface grid. This is done by 

integrating over the known flux contours using four point Gaussian integration in 

each element. Given this, the angle 19 is known in the whole poloidal plane using 

the finite element representation of Eq. (3.11 ). Finding the 19 j is thereby reduced 

to solving a third order polynomial equation for each i9 i. 

Another advantage of the flux surface grid is that the accuracy of the equilib

rium can be locally improved by accumulating the radial grid points, for example 

near a rational q-surface. The locally improved accuracy is of importance for 

modes which are localized at a particular flux surface or depend critically on the 

local equilibrium quantities. 

3.5 Test cases 

As a first test case we calculated a so called Soloviev equilibrium [Soloviev75), 
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error in grad('V) 

error in 'I' 

1 100 

Fig. 3.4 The absolute error in 1f of the numerical Soloviev equilibrium (E = 
1.5, E = 0.25) as a function of the number of radial intervals. The error is an 

average over 100 points in each element. 

and compared the numerical solution with the analytic expression. The Soloviev 

equilibria are analytic solutions of the Grad-Shafranov equation where the two 

equilibrium profiles p'( >/!)and FF'(>/!) are independent of>/!. The general up-down 

symmetric solution is given by: 

where x and y are the normalized coordinates and >/! is the normalized flux. The 

plasma boundary is given by >/J(x, y) = 1. The parameters b/a and A are a measure 

of the ellipticity and triangularity of the plasma boundary. The inverse aspect 

ratio, E, is defined with respect to the geometric center of the plasma. Note that 

in the literature, the Soloviev equilibria are usually represented by Eo and E, where 

Eo is the inverse aspect ratio with respect to the magnetic axis. Eo and E are related 

to E and b/ a through: 

(3.19) 

The Soloviev equilibrium used here is characterized by E = 1.5 and E = 0.25 ). 

The resulting error (an average error over many points) is shown in Fig. 3.4 as a 
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function of the number of radial elements, calculated with a polar grid. The con

vergence rate of the numerical solution .,P(x, y), calculated with the isoparametric 

elements, is of the fourth order of the grid size, which is the same as for the usual 

cubic Hermite elements. This shows that no accuracy is lost by approximating 

the original ( x, y) plane through the isoparametric mapping. The convergence 

of V.,P(x, y) is of one order less than the solution itself, in accordance with the 

expectation for finite elements without the use of an isoparametric mapping. 

The results shown here are obtained using an equidistant grid in both the 

radial and the angular coordinate. Especially for non-circular plasma boundaries, 

the errors can be reduced significantly (up to a factor 8 for this case) by using a 

non equidistant grid in the angular direction. 

1 
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100 

Fig. 3.5 The error of the growth rate of an n = 2 instability of a Soloviev 

equilibrium (E = 2, c: = 1/3, q0 = 0.6) as a function of the number of finite elements 

in the equilibrium calculation. The scaling with the grid size, h = (NR -1)- 1
, is 

indicated by the dashed lines. 

A more relevant test of the accuracy of the equilibrium quantities, that are 

used in the linear resistive stability code CASTOR, is to determine the sensitivity 

of the eigenvalues on the number of grid points of the equilibrium. For this, we 

have taken a Soloviev equilibrium (E = 2, E = 1/3, qaxis = 0.6) and calculated the 
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growth rate of an n = 2 instability as a function of the number of grid points of 

the equilibrium calculation. The eigenvalue was calculated using 5 harmonics in 

the poloidal direction and 51 radial grid points. The absolute value of the relative 

error of the resulting eigenvalues is shown in Fig. 3.5. The error is calculated using 

the value of the equilibrium with 51X51 grid points as a reference value. The error 

in the growth rate scales with the fourth power of the element size. The relative 

error as a function of the number of points is oscillating around zero: this causes 

the lower lying points in the graph. The graph shows that already with a coarse 

grid of 17 X 17 elements, the growth rate is converged up to four decimal places. 

3.6 Conclusion 

An equilibrium code has been developed for the purpose of calculating the 

metric coefficients of a coordinate system with the flux as a radial coordinate. It 

has been shown that bicubic Hermite elements yield a very accurate solution with 

relatively few finite elements. Through the use of an isoparametric mapping of the 

(x, y) coordinate system, also using bicubic Hermite elements, a solution can be 

obtained with the finite elements aligned on flux surfaces. In the solution, both 

the flux and the derivatives of the flux are continuous in the (x, y) plane. Here, 

it is used for the subsequent calculation of the metric coefficients required in the 

CASTOR code. However, many other applications can be imagined for the use of 

the isoparametric representation of a flux coordinate system. It may be useful, not 

only for the calculation of flux surface quantities, but also as an actual coordinate 

system to solve, for example, 2D transport or other MHD stability problems. 
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4. IMPLEMENTATION PLASMA-VACUUM BOUNDARY CONDITIONS 

4.1 Boundary conditions 

4.1.1 Ideal boundary conditions 

The boundary conditions at the interface of an ideally conducting plasma 

and a surrounding vacuum are given by: 

B·n = B·n = 0 ' 

P + !B2 _ 1fJ2 
2 - 2 ' 

( 4.1) 

( 4.2) 

where Eq. ( 4.1) expresses the fact that field lines cannot point out of the plasma 

(i.e. the definition of the plasma boundary) and Eq. (4.2) expresses pressure 

balance across the boundary. The vector n is the normal of the plasma boundary. 

The vacuum variables are distinguished from the plasma variables by a hat. Since 

an ideally conducting plasma allows for an arbitrary surface current, there is no 

condition on the continuity of the tangential component of the magnetic field. The 

jump in the tangential field across the boundary merely defines the surface current: 

nx(B-B)=j*. ( 4.3) 

The boundary conditions ( 4.1) and ( 4.2) are valid for an arbitrary stationary or 

moving plasma boundary, provided the actual values at the boundary are used. 

Here, however, we are interested in the linear stability of a given equilibrium and 

we need to rewrite the boundary conditions in terms of the equilibrium quantities 

and the perturbations. If the equilibrium is perturbed by a velocity field v( r ), the 

value of an arbitrary plasma parameter at the perturbed boundary is approximated 

to first order by: 

( 4.4) 

where A is an arbitrary vector with index 0 for the equilibrium quantities and 1 

for the linear perturbation. ,\ is the eigenvalue as defined in sec. 2.1. The normal 

to the plasma boundary is given by: 

(4.5) 
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This leads to the following linearized boundary conditions at the perturbed bound

ary: 

no•V x (v x Bo) - no 0 >.b = n 0 •V x (v x B0 ) - no 0 >.b = 0, ( 4.6) 

( 4.7) 

where bis the magnetic field perturbation. The second part of Eq.( 4.6) is just the 

ideal induction equation and, hence, trivially satisfied. Conditions ( 4.6) and ( 4.7) 

can be simplified if we ignore the physically less interesting equilibria with surface 

currents. In that case the equilibrium magnetic field is continuous across the 

boundary, Bo = Bo, and the pressure p0 falls to zero at the boundary. The terms 

containing the velocity v both in Eq. ( 4.6) and Eq. ( 4. 7) contain only derivatives 

of Bo in the plane of the plasma surface and are, therefore, continuous going from 

plasma to vacuum. This simplifies Eqs. ( 4.6) and ( 4. 7) to 

( 4.8) 

( 4.9) 

From the evolution equation for the pressure, 

( 4.10) 

it is clear that for the equilibria without surface currents the Lagrangian pressure 

perturbation must vanish at the plasma boundary. 

4.1.2 Resistive boundary conditions 

The main change going from ideal to resistive boundary conditions is that 

surface currents are no longer allowed in the plasma perturbation. This changes the 

definition of the surface current of the ideal boundary conditions to two additional 

resistive boundary conditions: 

Bx n =Bx n. ( 4.11) 

Expressed in terms of the equilibrium magnetic field and a linear perturbation this 

gives: 

( 4.12) 
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For equilibria with zero current density at the plasma boundary V Bo is continuous 

and Eq. (4.12) reduces to the condition that the tangential perturbation of the 

magnetic field is continuous. 

If this condition is satisfied, it follows that the magnetic perturbation parallel 

to the equilibrium magnetic field, Bo•b, is also continuous. The pressure balance 

condition in the resistive case then reduces to 

PI= 0. (4.13) 

However, this condition is trivially satisfied since we have assumed both p0 and 

Vpo (as part of the total current) to be zero at the boundary, reducing Eq. ( 4.10) 

to Eq. ( 4.13). Thus, the pressure balance does not pose any boundary condition 

in this case and is replaced by the continuity of the tangential magnetic field 

perturbation. 

The condition of the continuity of the normal component of the magnetic 

field does not change. But the condition that B•n equals zero, which was trivially 

satisfied in the ideal case by virtue of the ideal induction equation, now imposes 

an additional constraint. That is, the resistive induction equation must reduce to 

the ideal induction equation at the plasma boundary: 

no•l)j = 0, (4.14) 

where j is the perturbed current density. Combination of Eq. (4.14) with the 

condition n• J = 0 at the perturbed boundary, i.e. 

no•i + no•(V xv x Jo)= 0, (4.15) 

yields a condition on the equilibrium current density at the plasma boundary: 

Jo= 0. (4.16) 

So, the choice of J0 = 0 made in the first paragraph, appears to be a sufficient 

condition to obtain a consistent set of boundary conditions. 

A consequence of J 0 , n 0 • j and PI being zero at the boundary is that all 

the driving terms in the momentum equation are pointing normal to the plasma 

boundary. The velocity perturbation at the boundary of a resistive plasma will 

therefore have no tangential components. 

The discontinuity of the tangential magnetic field at the plasma boundary 

in an ideally conducting plasma, is replaced by a rapid change of the tangential 
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field perturbations in a resistive boundary layer in order to connect continuously 

to the vacuum magnetic field. Consequently, the surface current density arising in 

the perturbation in ideal MHD, is now spread out in this layer. The behavior of 

the normal magnetic field perturbation is similar to the ideal situation since the 

continuity of this component does not depend on a finite resistivity. The change 

in the tangential components of the velocity perturbation is also taking place in 

the resistive boundary layer. Tjie width of the resistive boundary layer decreases 

with T/ as ry 112 • 

4.2 Implementation of the boundary conditions 

For ideal MHD the problem of implementing the plasma vacuum solution 

has been solved in a number of ways. For example, in the PEST code [Grimm76], 

a Green's function method is used. Here, one does not have to solve for the 

complete vacuum solution explicitly but complicated surface integrals arise over 

both the plasma boundary and the ideally conducting wall. In the ERATO code 

[Roy90], the problem is solved by artificially extending the domain in which the 

perturbed magnetic vector potential is calculated up to the wall. This allows 

an easy implementation of the boundary conditions but increases the size of the 

resulting eigenvalue problem. It also suffers from the fact that the divergence of 

the vector potential is not zero in the vacuum. 

For resistive MHD, the boundary conditions change to a continuity condition 

on the total perturbed magnetic field. To implement the boundary conditions we 

have developed a formulation whereby both the ideal and the resistive boundary 

conditions are implemented as natural boundary conditions, i.e. they are automat

ically satisfied after minimization of the weak form. It will be shown that the ideal 

boundary conditions are retrieved by setting the resistivity to zero in the general 

resistive case. Moreover, the vacuum problem can be solved independently from 

the eigenvalue problem of the plasma interior. The method may be considered 

as an extension to a general toroidal geometry of the cylindrical analysis of the 

cylindrical resistive MHD code LEDA [Poedts89]. 

In the weak form formulation of the eight resistive MHD equations, as used 

m CASTOR (see chapter 2), two surface integrals appear as a result of partial 

integration of the momentum and the induction equation. The momentum equa

tion contributes a boundary term to the weak form which is independent of the 

resistivity: 

Wf=-Jls(v*•no)(p1+Bo·b)dS, (4.17) 
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whereas the induction equation yields a purely resistive term: 

W,R =fl !)(A* x b )•nodS. (4.18) 

By rewriting the ideal and resistive surface terms by introducing information of the 

vacuum solution and using the boundary conditions to connect the plasma solution 

with the vacuum solution, both the ideal and resistive boundary conditions can 

be implemented. We will start with the ideal conditions. 

Using the pressure balance condition (4.9) of the ideal boundary conditions 

and the absence of equilibrium surface currents, Bo = Bo, Eq. ( 4.17) can be 

rewritten as: 

(4.19) 

If we now perturb the vacuum with a unit magnetic field perturbation at the 

plasma boundary, b•no = b0 n 0 , the response of the vacuum in terms of the parallel 

magnetic field perturbation, B 0 °b, at the plasma boundary can be 'measured' with 

Eq. ( 4.19). Defining the vacuum response as: 

(4.20) 

and rewriting Eq. ( 4.19) m terms of plasma variables, the ideal boundary term 

becomes: 

w; = - fl & (v*•no)(b•no)dS. ( 4.21) 

So, all information needed from the vacuum solution is the operator a at the plasma 

boundary. This quantity can be calculated independently from the solution of the 

plasma equations. 

In cylindrical geometry, the different Fourier harmonics in the poloidal angle 

are not coupled and can be treated independently. The vacuum is then pertmbed 

with one Fourier harmonic of b•no yielding a response of the same Fourier harmonic 

in B 0 °b. The vacuum response a is then a single constant which depends on the 

poloidal and toroidal Fourier harmonic and on the distance of the plasma boundary 

to the wall and can be expressed analytically in terms of Bessel functions. 

In a general toroidal geometry, with an arbitrary shape of the plasma bound

ary and the wall, both the perturbation and the response at the plasma boundary 

can be arbitrary functions of the poloidal angle. The general vacuum perturbation 

Implementation plasma-vacuum boundary conditions 31 



can then be taken as a series of independent perturbations, where one perturba

tion of the plasma boundary can be characterized, for example, by one Fourier 

harmonic (with all the other harmonics set to zero). The response of each inde

pendent perturbation (b•no)k will again be an arbitrary function in the poloidal 

angle: 

(Bo•b)k = L ak1ei 18(b•no)k· 
I 

Rewritten in Fourier components Eq. (4.19) reads: 

Wf = - ff L( v'•no)me-imB L CTk/ ei18 (b•no)kdS, 
Ds m k,l 

(4.22) 

( 4.23) 

where all the information of the vacuum is now described by the vacuum response 

matrix a , which is a function of the shape of both the plasma and the wall, and 

of the aspect ratio, the plasma wall distance, the toroidal mode number, and the 

equilibrium angular coordinate distribution at the plasma boundary. 

Notice that in the derivation of Eq. ( 4.23) we have used both ideal bound

ary conditions. In this formulation, the pressure balance has become a natural 

boundary condition which will be satisfied automatically after minimization of the 

weak form including the boundary term. The continuity of b0 n is satisfied by 

definition since the different Fourier components of b·n provide the amplitudes of 

the independent vacuum solutions. 

The same procedure of rewriting the boundary term to implement the bound

ary condition as a natural boundary condition can be followed for the resistive 

boundary conditions. In the case of a finite resistivity the perturbed pressure, P1, 

equals zero at the boundary and the pressure balance reduces to the continuity 

of the parallel magnetic field perturbation, Bo•b. This leaves expression ( 4.19) 

for the ideal surface term unchanged. This term is now used to implement the 

continuity of B 0 °b. The resistive surface term, w,n, can be used to implement the 

continuity of the other tangential component of the perturbed magnetic field. In 

covariant components w.n reads: 

W,n = fl 11( A~ b3 - Ai h2 )d</>dB, ( 4.24) 

where we have used the continuity across the boundary of both tangential compo-

nents b2 and b3. As in the ideal case, we define the vacuum response caused by a 

unit perturbation of the normal magnetic field, b•n, now in terms of b2 and b3 : 

(b2)k = L i'k1ei 18 (b•n 0 )k. ( 4.25) 
I 
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The Fourier components of the fe, f and & matrices are related through 

and the normal component of the vacuum equations, V x b = 0, at the plasma 

boundary: 

So, for the implementation of the boundary conditions in the CASTOR code, 

we need only one of the three vacuum response matrices. Only in the case of 

axisymmetric modes, n = 0, there is no relation between b2 and b3 . In that case, 

the matrix ffi is zero and we have to use the matrix')-. The final form of the resistive 

surface term is: 

w.R =fl L ry(ffik1(Ai)m - i'kt(A;)m)(b•no)ke-i(m-l)Ods. 
m,k,l 

( 4.28) 

4.3 The vacuum solution 

In the previous section it was shown how the vacuum, and the plasma prob

lem can be solved independently and what quantities are needed from the vacuum 

solution to solve the free boundary plasma problem. Here we will discuss the for

mulation of the vacuum problem in terms of the scalar potential and the numerical 

solution using cubic Hermite finite elements. 

The perturbation of the magnetic field in the vacuum in between the plasma 

boundary and an ideally conducting wall, is described by the equations 

v x b = 0, 

V·b = 0. (4.29) 

Because of the linearity of these equations, no information of the equilibrium 

vacuum magnetic field is needed. The boundary condition at the plasma vacuum 

interface is determined by the independent unit perturbations driving the vacuum, 

as defined in the previous section: 

( 4.30) 
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Fig. 4.1 The vacuum geometry, showing the arbitrarily shaped ideally conduct

ing wall surrounding the plasma. 

At the ideally conducting wall, the normal component of the magnetic field must 

vanish: 

b•nwall = 0. ( 4.31) 

The zero curl of b suggests the introduction of a magnetic scalar potential: 

b = V<I>, ( 4.32) 

reducing the four vacuum equations ( 4.29) to a single Laplace equation: 

V 0 V<I>=O. (4.33) 

For the numerical solution of Eq. ( 4.33) we use the standard weak form of 

the finite element method [Schwarz88]: 

Wv = JJJ <I>*\72 <I>dV = - JJJ V<I>* 0 V<I>dV + JJ <I>*(b·n0 )dS, ( 4.34) 
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where the surface integral is over both the plasma boundary and the wall. The 

boundary term which contains the term (b•no) is perfectly suited to implement 

the boundary conditions of the vacuum problem as natural boundary conditions. 

The term arising from the wall vanishes and the term from the plasma boundary 

is determined by the unit perturbation of the vacuum. This term then yields the 

right hand side of the set of linear equations resulting from the minimization of 

Wv. 

The coordinate system to be used in the vacuum must have both the plasma 

boundary and the wall as a radial coordinate surface. On the plasma boundary 

the vacuum poloidal angle coordinate is chosen to be the same as the plasma 

poloidal angle so that the continuity of b0 n also holds for every Fourier component 

separately. This leads to the following coordinate system: 

J - {)(8)1 
- plasma boundary' 

( 4.35) 

where (r, 8) is the polar coordinate system centered at the geometric center of the 

plasma boundary. The functions Tp and Tw are the radius of the plasma boundary 

and the radius of the wall, respectively (see Fig. 4.1). 

For the discretization of <I> we use Fourier harmonics in the poloidal angle, 

J, and cubic Hermite finite elements, H 1 ( s) and H 2 ( s), in the radial coordinate: 

( 4.36) 
i,m 

Minimization of the discretized lV v with respect to <I>* leads to a set of linear 

equations of which the matrix elements are given by: 

J ( - 22 ( n 
2 
J) ) A 

A;,j = Hk,pHk,p mm(Jg )(m-m) + R 2 (m-ni) ds 

+j aHk,p H . - (J 12) d' as k,p'm g (m-m) s 

J aHk,p . ( i2) d' + -Hk,p 8;- im Jg (m-m) s 

( 4.37) 

J aHk,p aHk,p 11 d' + as -r;;-(Jg )(m-m) s, 

where gii are the metric coefficients of the coordinate system ( 4.35 ). The labels 

p and p label the two different cubic Hermite elements, the labels /,c and k label 

the radial node of the element. The indices i and j are related to the Fourier 

components m and in, the kth and /(;th radial grid point, and the element labels p 
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and p by i = 2M( k - 1) + 2( m - 1) + p and j = 2M(k - 1) + 2( i'h - 1) + p, where 

M is the total number of Fourier harmonics. 

To calculate the vacuum response matrix a, we have to calculate the response 

of each harmonic of the driving perturbation separately. So, we have to solve the 

system of equations, A a: = Cm, M times. Each right hand side vector is equal to 

zero except for one element: 

C2mpert-l = -( Jbl )mpert · (4.38) 

where Jb1 is set to 1 since we need only a normalized solution. Each vector c 

yields one column of the vacuum response matrix: 

(4.39) 

The matrix of the system of equations is a block tridiagonal positive definite 

matrix with a band width of two times the number Fourier harmonics. The length 

of the diagonal is 2M times the number of radial points. The system is stored in 

band form, storing only the lower half of the matrix. The equations are solved 

by Gauss elimination. The decomposition of the A matrix which is relatively 

expensive in CPU time, is independent of the c vector and has to be done only 

once. To obtain the M solutions a backward substitution has to be clone for every 

c vector. 

4.4 Conclusion 

In this section, we have described the boundary conditions for resistive free 

boundary modes in a general toroidal geometry. The boundary conditions have 

been implemented in the CASTOR code as natural boundary conditions, such that 

at zero resistivity the ideal boundary conditions are retrieved. The magnetic field 

perturbations in the vacuum are calculated independent from the plasma eigen

value problem. The Laplace equation for the scalar potential in the vacuum is 

solved using a standard Galer kin method with a Fourier /finite element represen

tation. This allows for an arbitrary shape of the ideally conducting wall, which 

can, for example, be used to determine the influence of an axisymmetric limiter 

close to the plasma boundary on the stability of free boundary modes. 

Extensive tests of the free boundary CASTOR code have shown that ideal 

modes and cylindrical resistive modes are accurately reproduced. Details are given 

in Appendix B. Checking the resistive boundary conditions gives us confidence that 

the CASTOR code can now be used for the study of resistive free boundary modes 

in a general toroidal geometry. 
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5. STABILITY OF EXTERNAL RESISTIVE MODES 

In the previous section we have described the boundary conditions at the 

plasma boundary of a resistive plasma surrounded by a vacuum and an ideally 

conducting wall. Also described in section 4 are the implementation of the solution 

of the vacuum problem and of the boundary conditions in the toroidal resistive 

MHD code CASTOR. Using the equilibrium mapping code HELEN A, as described 

in section 3, to calculate the equilibria and the metric coefficients, we are now in 

the position to examine the stability of external or free boundary resistive modes 

in a general toroidal geometry. In section 5.1, we start with a short overview of 

the stability properties of external modes in the cylindrical approximation and 

recalculate some known results. In section 5.2, we present our results on the 

stability of free boundary modes in toroidal geometry. The influence of a low 

pressure is discussed and a comparison is made between the free boundary and 

fixed boundary tearing modes. In section 5.3, we examine the influence of an 

X-point plasma shape on the stability of free boundary modes, especially those 

localized near the plasma edge. 

5.1 Cylindrical geometry 

The simplest approximation of a toroidal tokamak is a straight cylinder with 

the additional constraint of periodicity along the cylinder axis. This is also called 

the straight tokamak. The constraint relates the length of the cylinder, L, to 

the major radius of the torus, R, and to the toroidal mode number, n: L = 
2rr R/n. Although, for example, the toroidal curvature can have a large effect on 

the stability properties, the periodic cylinder serves well to show the difference 

between the ideal and resistive external modes. 

In ideal MHD, the stability of external modes of a pressureless cylindrical 

equilibrium is well known. The ideal mode is driven by the current density gradient 

at the edge. For a given poloidal mode number, m, this mode is unstable in a 

window of the edge safety factor, q1 , extending from q1 = m down to qM > m -1, 

where the actual value of qM depends on details of the current density profile and 

the distance between the plasma boundary and the ideally conducting wall. With 

increasing mode number, the mode gets more and more localized at the edge: the 

amplitude of the mode behaves like (r - r,)lml- 1 , where r, is the radius of the 

rational q-surface. For large m, the stability of the mode is determined by the local 
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equilibrium quantities at the edge, so that it can be expressed by a local stability 

criterion [Laval74]. For equilibria with a finite current density at the edge, details 

of the profiles are not relevant and the instability window is determined by the 

edge current density, 11: 

( 5.1) 

where (J) is the average toroidal current density through the poloidal plane. In 

the more interesting case when the current density at the edge is zero, the stability 

is determined by the gradient of the current density at the edge, J{: 

1 [ (2m(J) )] m 
; m - exp aJ{ < q1 < -;;:· (5.2) 

In this case, the unstable region shrinks exponentionally with increasing poloidal 

mode number and only the lower m values (2 ~ 4) seem to be relevant. The 

same derivation of the stability condition (5.2) was used by [Laval74] to show the 

influence of a finite conductivity in the plasma. The effect was taken into account 

by allowing a jump in the normal component of the perturbation at the rational 

surface of the otherwise ideal solution. So in resistive MHD, the unstable window is 

symmetric around the rational q1 value with the half-width given by the left-hand 

side of Eq. (5.2). The size of the unstable window is independent of the resistivity 

in this approximation. The growth rate of the modes at q1 > m/n scales with 

resistivity as T/3 / 5 , the tearing mode scaling. At the q1 < m/n side, the growth 

rate is mainly determined by the ideal instability. 

As an illustrative example, we have calculated the growth rates of a pres

sureless equilibrium with a circular boundary and Jq, = 1 -1/J(r). In Fig. 5.1, the 

growth rate of the ideal m = 2 mode is plotted versus q1 . This external mode is 

unstable in the window 1.6 < q1 < 2.0. Since in ideal MHD, reconnection of field 

lines can only take place in the vacuum region, the mode becomes stable when the 

rational q-surface moves into the plasma. With the resistive version of the external 

mode, reconnection can, of course, also take place with the rational surface inside 

the plasma. The driving term of the instability, the current density gradient at 

the plasma boundary, is unchanged. The resistive external mode will, therefore, 

be unstable in a larger window of q1 values, extending the window at the larger q1 

values. This is shown in Fig. 5.1, by the upper curve, which represents the growth 

rate of the free boundary resistive mode for T/ = 10-7
. Instead of becoming stable, 

the mode now has a maximum growth rate at q1 = 2. At the low q1 side, the 

rational surface lies inside the vacuum so that resistivity does not give additional 
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freedom to the mode as compared to the ideal case and the position of qM is 

unchanged. The change in slope at q1 ~ 2.3 is caused by an unstable 'internal' 

tearing mode. The growth rate of the internal mode with the conducting wall onto 

the plasma boundary is shown for comparison. 

ideal 

wall on plasma 
1 o-3 

1.5 2.0 2.5 3.5 4.0 4.5 

Fig. 5.1 The growth rate of a free boundary m = 2 tearing mode in a cylinder 

as a function of q at the boundary. Also shown are the ideal external kink mode 

and the fixed boundary tearing mode. 

A necessary condition for the stability of ideal pressure driven interchange 

modes in a cylinder is given by the Suydam criterion: 

( 5.3) 

This criterion is a local stability criterion containing only local equilibrium quan

tities. Violation of the Suydam criterion gives rise to unstable modes which are 

very localized in the radial direction with an oscillatory behavior around the ra

tional surface where q = -m/n. However, in ideal MHD, the oscillation theorem 

[Goedbloed74] states that, apart from the localized modes, the more dangerous 

global modes are also unstable, with a larger growth rate. The influence of re

sistivity on the local stability criterion is very large. It was shown by [Coppi63) 

that the localized resistive interchange modes are not stabilized by shear, i.e., the 
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right hand side of the Suydam criterion (5.3) is absent in the resistive case. This 

means that for typical tokamak plasmas, where the pressure gradient is negative 

everywhere, the resistive interchange mode is always unstable in a cylinder. As an 

example, we have examined the stability of the pressure driven interchange mode 

for the frequently used 'Wesson' equilibrium. The current density, the q-profile, 

and the pressure profile are given by: 

4 
iz(r) = io(l - r2)2, q(r) = Rio (2 - r2), 

( 5.4) 

p(r) = ~i5((1 - r 2)- ~(1- r 4) + ~(1 - r 6)), 

where io is the current density on axis, and R defines the periodicity length of 

the cylinder (i.e., the major radius of the torus). An equilibrium with j 0 = 0.4 

and R = 2.5 is Suydam unstable in the region 0 < r < 0.54, or 2 < q < 2.33. 

The growth rate of the most unstable ideal m = 4 interchange mode versus q1 for 

this equilibrium is shown in Fig. 5.2 (full curve). The Suydam unstable region 

is indicated by the black bar. It appears that, although the Suydam criterion is 

derived for localized modes, it also gives a good estimate of the stability window 

for the more unstable global m = 4 mode. This is not surprising since the global 

m = 4 mode is already rather localized around the rational surface. Adding 

resistivity to the plasma, the m = 4 interchange mode is unstable over the whole 

range of q1 values as shown by the dashed curve in Fig. 5.2. The two curves show 

the growth rate of the mode with the conducting wall on the plasma and with the 

wall at infinity. With the rational surface moving towards the plasma boundary 

with decreasing q1, the interchange mode slowly changes into a tearing mode in 

the free boundary case. This causes the sharp increase of the growth rate of the 

free boundary mode near q1 = 4. 

5.2 Toroidal geometry; Pressure dependence 

The main difference between cylindrical and toroidal geometry is that the 

curvature of the magnetic field lines, instead of being constant on a flux surface, 

now has a 'good' curvature region on the inside of the torus and a 'bad' curvature 

region on the outside. The average curvature of the field lines in a torus is more fa

vorable for stability than in a cylinder. Thus, the curvature will have a stabilizing 

effect on modes with low poloidal mode numbers such that the mode on average 

experiences a favorable curvature. In contrast with cylindrical geometry, the dif

ferent poloidal harmonics can couple in toroidal geometry to form a mode which is 

localized on the outside of the torus in the region of unfavorable curvature where 

the pressure gradient is destabilizing. These are the so-called ballooning modes 
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Fig. 5.2 The growth rate of the ideal and resistive m = 4 pressure driven 

interchange mode in a cylinder as a function of q at the boundary. The black bar 

indicates the Suydam unstable range. 

In this section, the pressure dependence of current driven tearing modes 

is discussed. We will start with a short recapitulation of the analytic results of 

resistive layer theory [Glasser75] on the stabilizing influence of a finite pressure in 

a toroidal geome.try. These results are given in the large aspect ratio low /3 ( ~ E2 ) 

tokamak approximation as derived by [Glasser76, Hastie77] since this shows the 

relevant terms more clearly. It will then be shown (sec. 5.2.2 and 5.2.3) numerically 

that a finite pressure has a different influence on the stability of the external (free 

boundary) resistive modes as compared to that of the internal (fixed boundary) 

modes. 

5.2.1 Analytic theory 

A necessary stability condition for the ideal interchange modes in toroidal 

geometry is given by the well known Mercier criterion [Mercier60]. In the large 

aspect ratio, low /3 approximation, it reads: 

2q2 I ( 1 ) ( q ) 2 
DM < i, DM = B~rp 1 - q2 q' . (5.5) 

Compared to the cylindrical Suydam criterion, the additional term (1- q
1
2 ) provides 

stabilization due to the toroidal curvature if q > 1. In typical tokamak discharges, 
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the Mercier condition is usually satisfied in the region where q > 1 and q' finite. 

Using the same ordering, the resistive version of the interchange condition is given 

by: 

r 

DR< 0, 2q2 ( q ) 2 ( 1 q J i'a 2R2 i' ) DR = -p' - 1 - - + -q' dr(- - --p') . B5r q' q2 r3 q2 B5 (5.6) 

0 

As in the cylindrical interchange condition, the term t on the right-hand side 

of Eq. 5.5, representing the shear stabilization, does not survive in the resistive 

interchange condition. However, the additional integral term is stabilizing when 

q' > 0 and p' < 0. Thus, if q > 1, the resistive interchange condition is also 

satisfied, in contrast to the cylindrical case. 

When the resistive interchange condition is satisfied, the stability of the 

tearing mode becomes important. It was shown by [Glasser75], that although the 

resistive layer is very small in the limit of small resistivity, the effect of the favorable 

average curvature cannot be neglected in a toroidal geometry. In combination with 

a finite pressure, the curvature has a large stabilizing influence on the tearing mode. 

The cylindrical stability condition!:;.' < 0 (see section 1.2) changes to: 

(5.7) 

where, in general, 6.c is a complicated function of the equilibrium parameters, and 

!:;.' is the cylindrical driving term. In the bulk of the plasma, away from the plasma 

center and the plasma boundary, 6.c may be approximated by: 

6. = 1 54( V, )D516 
c • Xo R , (5.8) 

where V,/ X 0 is the ratio of the macroscopic scale length to the thickness of the 

resistive layer. In the large aspect ratio expansion, V,/ Xo can be written as: 

I 2 1/6 

V, = [~ (nBo ']__) / (l + 2q2 )] 
Xo p ryR q 

(5.9) 

This shows that the stabilization scales with ry- 1/ 3 and will therefore be particu

larly pronounced at high temperatures. 

In the case considered here, with DR > 0, the tearing mode (also called the 

modified tearing mode) has two complex conjugate solutions. The real part of the 

eigenvalue changes sign at /:;. 1 = 6.c. At this point the mode is purely oscillatory. 
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At low pressure the approximation of Eq. (5.4) breaks down since a term, G, 

in Ll.c scaling as ;P becomes very large. The expression for Ll.c has to be modified 

to: 

with G= B~ 
/p(l + 2q2

) 
(5.10) 

where Ll.c is the critical L\. as given by Eq. (5.8). Thus, at a low (local) pressure, as 

will occur near the edge of the plasma, the stabilization can be much less efficient. 

In this formulation of the resistive stability of a plasma, the driving term of 

the instability, LI.', is determined by the cylindrical equilibrium approximation and 

is thereby independent of the pressure, the aspect ratio, or the resistivity. However, 

the driving term does depend on these equilibrium quantities and fully toroidal 

resistive calculations are needed to determine the resistive stability accurately. For 

fixed boundary (internal) resist:ve modes, the effects of a finite aspect ratio and 

pressure were studied numerically by [Hender89]. In the following sections, we will 

extend the numerical analysis to include the stability of free boundary (external) 

resistive modes using the CASTOR code (see chapter 2) with the extension of the 

vacuum as described in the previous chapter. 
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5.2.2 Numerical results, internal modes. 

We will start this section with a typical example of the stabilization of an 

internal tearing mode by the good average curvature in combination with a finite 

pressure. To that end, we have calculated the eigenvalues of the m/n = 2/1 

tearing mode. The equilibrium used for this calculation is given by an inverse 

aspect ratio of 0.25 and a circular plasma boundary. At zero pressure, the current 

density profile is given by the r( ,P) profile (as defined by Eq. (3.7)), f( ,P) = 1- ,P2
. 

The total current is determined by the value of q at the edge, q1 = 2.65. In this 

pressureless case, the m/n = 2/1 tearing mode is unstable with a real growth 

rate which decreases with decreasing resistivity ( ~ '7315 ) but the mode remains 

unstable for any value of '1· This changes when we add even a small pressure. The 

normalized pressure profile used here is given by II( ,P) = 1 - ,P, the total pressure 

is given by the poloidal f3 of 0.26 where the poloidal f3 is defined by: 

/3 _ 87rS <p> 
p - J2 (5.11) 

with <p> the volume averaged pressure, S the area of the poloidal cross section 

of the plasma, and I the total toroidal plasma current. The resulting equilibrium 

profiles of the pressure, current density and q are shown in Fig. 5.3. 

The locus of the eigenvalue of the m = 2 tearing mode as a function of the 

resistivity is shown in Fig. 5.4. At high '1 ('1 = 10-6 ) the m/n = 2/1 tearing 

mode is still unstable with a real growth rate. Also drawn in the figure is the 

real eigenvalue of a less unstable branch. On this branch the eigenvalue increases 

with decreasing resistivity. As the resistivity is decreased further, the width of the 

resistive layer decreases and the stabilizing influence of the pressure becomes larger. 

At '1 = 2.3. x 10-7 the eigenvalue of the mode coalesces with the one of the lower 

branch and the two modes split into two overstable modes (Re[>.] > 0, Im[>.] fo 0) 

which trace a curve in the complex plane. At '1 = 4. X 10-B, the mode stabilizes and 

the time behavior of the mode is purely oscillatory. As the resistivity is decreased 

still further, j>.j goes to zero approaching' the origin from the stable side as '7 1
/

3
, 

i.e., the interchange scaling. 

Next, we examine the influence of the amplitude of the pressure profile and 

the radial position of the rational q surface on the stability of the m/n = 2/1 

tearing mode. The growth rate is calculated as a function of the total current 

for three values of the poloidal /3, viz. /3p = 0, 0.13, and 0.26, using the same 

equilibrium profiles as before. By scanning the total current, the position of the 

rational surface changes from the plasma center at low current to the plasma edge 
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Fig. 5.3 The equilibrium profiles of the flux, the pressure, the toroidal current 

density, and the safety factor q as a function the normalized minor radius (x). 

and the vacuum for the higher currents. The relative shape of the q-profile changes 

only marginally. While increasing the total pressure, we keep the f( ,P) profile fixed. 

This means that the shape of the current density profile changes with increasing 

pressure. However, the pressures considered in this section are rather small and 

the current density profile is mainly determined by the r( ,P) profile. At (3p = 0.26, 

the contribution of the II( ,P) profile to the current density is about 20%. If we had 

taken the more commonly used representation of the current density in terms of 

the FF' profile, the changes in the current density would have been much larger. 

The equilibria are characterized by a very broad current density profile such 

that there is only one rational surface inside the plasma for the range of currents 

considered. Consequently, no coupling can occur to other modes. The resulting 

growth rates of the m / n = 2/1 tearing mode for the three different pressures 

are shown in Fig. 5.5. The eigenvalues are calculated using 5 Fourier harmonics 

ranging from 1 to 5, and 101 radial grid points. The eigenvalues are plotted versus 

the value of q at the plasma boundary, which is inversely proportional to the total 

current. The resistivity in this calculation is 10-5 . 
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Fig. 5.4 The locus of the eigenvalue in the complex plane of an internal m/n = 

2/1 tearing mode as a function of the resistivity. 
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Fig. 5.5 The growth rate of an internal m/n = 2/1 tearing mode as a function 

of q1 for three values of the poloidal beta. The resistivity is 10-6 . 
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At zero pressure, the mode is unstable in the window, 2.2 < qi < 3.35. At the 

low qi side, where qi < 2.2, the 2/1 mode is stabilized by the ideally conducting 

wall which forces the normal component of the velocity and the magnetic field 

component to be zero. This marginal qi is independent of the resistivity. Only for 

high resistivity ( '// > 5.10-6
) when the layer width is of the order of the distance of 

the rational surface to the wall, the mode is becoming more stable with increasing 

resistivity. At the high qi side, the mode is unstable up to the point where the 

q = 2 surface coincides with the plasma center. 

x 1 0-2 
V1 

0.20..--~~-.-~~~-.-~~-...~~~-.--~~--. 

0. 10 

0.0 0.2 0.4 0.6 0.8 1 . 0 
s 

X10 2 

1 .00....-''--~-.-~~~-.-~~-...~~~-.--~~--. 

- 1 . 00 

-3.00 

-5.oo.__~~-'-~~~..._~~--'-~~~_,_~~--' 

0.0 0.2 0.4 0.6 0.8 1 . 0 
s 

Fig. 5.6 Them = 1, 2, and 3 harmonics of the normal component of the velocity, 

and the density perturbation of an internal m/n = 2/1 tearing mode near marginal 

stability as a function of the radial coordinate, s. The m = 2 and 3 harmonics are 

indicated by a and f3. 
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When the pressure is increased, both the size of the unstable window in 

q1 and the maximum growth rate become smaller. The stabilization is most pro

nounced at the high q1 side because the driving force, the current density gradient, 

is smaller in the plasma center. The different components of the eigenmode near 

marginal stability at q1 = 2.89 and /Jp = 0.26 are plotted in Fig. 5.6. It shows the 

first three Fourier harmonics of the component of the perturbed velocity normal 

to the flux surfaces (v1 ), and the density perturbation (p1). Since we have taken 

the equilibrium density profile constant, the density perturbation equals the diver

gence of the velocity perturbation and is, therefore, a good measure of the plasma 

compression caused by the mode. Along the horizontal axis, the radial coordinate 

s( = V!f) is plotted, where s = 0 on the magnetic axis and s = 1 at the plasma 

boundary. Notice that the m = 2 harmonic of v1 develops a minimum at the 

q = 2 surface. This is seen more clearly on the density perturbation. This local 

minimum becomes smaller with decreasing growth rate and is characteristic for 

the mode near marginal stability [Harley 91 J in the case of a compressible plasma 

( 'Y = 5/3). 

2.3 2.4 2.5 2.6 2.7 

q1 
2.8 2.9 3.0 

Fig. 5.7 The growth rate of an internal m/n = 2/1 tearing mode as a function 

of the value of q at the edge, for three different values of the resistivity. The 

poloidal /3 is 0.26. 

At first sight, it 1s not completely clear whether the stabilization of the 
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m/n = 2/1 mode is due to the good average curvature or is simply caused by 

the small changes of the current density profile. To show this more clearly we 

calculated the growth rates as a function of q1 at a pressure of /3p = 0.26 for three 

different values of the resistivity, viz. T/ = 10-6 , 10-7 , and 5 x 10-8 • The results 

are shown Fig. 5. 7. The upper curve for T/ = 10-6 is identical to the lower curve 

of Fig 5.5. It is seen that reducing the resistivity, apart from the usual reduction 

of the growth rate, has only a small stabilizing effect (i.e., a change of sign of the 

eigenvalue). However, the figure does show that for T/ smaller than 10-6 , the 2/1 

mode is stabilized through the average curvature effect. For T/ larger than 10-6 

the position of the marginal point is independent of the resistivity. So, in that 

case the lower growth rates at /3p = 0.26 are not caused by the curvature. This 

is also clear from the fact that at T/ = 10-6 the mode is not becoming overstable 

near the marginal point. This in contrast to the situation at lower TJ, where the 

mode is overs table over a large part of the unstable window in q1 • For T/ = 10-7 

the mode is overstable in the range 2.76 < q1 < 2.90, and for T/ = 5 x 10-3 

in the range 2.68 < q1 < 2.84. To completely stabilize the m/n = 2/1 tearing 

mode for this equilibrium, the resistivity must be reduced further. For example, 

at q1 = 2.65, /3p = 0.26, the mode becomes stable at T/ = 4 x 10-8 (see Fig. 5.4). 
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Fig. 5.8 The dependence of the growth rate of an m/n = 2/1 tearing mode on/ 

(the ratio of the speci:nc heats), showing the influence of the plasma compressibility. 
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The influence of the compressibility of the plasma at a finite pressure can be 

studied by varying the value of/, the ratio of the specific heats. The contribution 

of the plasma compression to the total energy in ideal MHD is given by (see 

Eq. (1.2)): 

(5.7) 

where e is the plasma displacement, ae/Dt = v. The compression energy is positive 

definite and, therefore, stabilizing in ideal MHD. The contribution of this term can 

be determined by letting I go to zero such that the plasma compression does not 

require any energy. The dependence of the growth rate on / for q1 = 2.67, '// = 

10-6
, and (Jp = 0.26 is shown in Fig. 5.8. The growth rate at I = 0 is approximately 

the same as the growth rate at zero (J so that we can conclude that the reduction 

in growth rate at finite (J and '// > 10-6 is due to the plasma compression of the 

tearing mode. 

5.2.3 Numerical results, external modes. 

Turning to the stability of the external or free boundary modes the picture 

changes considerably. The ideally conducting wall is removed from the plasma 

boundary and placed at a finite distance from the plasma, which is now surrounded 

by a vacuum. This removes the boundary condition on the normal component of 

the normal velocity and the plasma boundary is allowed to move freely. The 

condition on the normal component of the magnetic field perturbation at the 

ideally conducting wall is unchanged, although the condition is now on the vacuum 

magnetic field (see chapter 4). 

Using the same equilibria as before (see Fig. 5.3), we have calculated the 

growth rate with the wall positioned relatively close to the plasma at 1.2 times 

minor radius. The shape of the wall is taken to be the same as the shape of 

the plasma boundary (circular in this case). The resulting growth rates of the 

resistive free boundary modes for (Jp = 0 and (Jp = 0.26 are shown in Fig. 5.9. 

For comparison we have included the growth rates of the fixed boundary modes 

at (Jp = 0.26. The resistivity is 10-6 . 

The two maxima in Fig. 5.9, at q1 = 1.9 and q1 = 2.9, correspond to the 

m = 2 and m = 3 external modes. At the lower side of q1 = m/n, the growth 

rates are largely determined by the underlying ideal instability as indicated in the 

figure for the m = 3 mode. At the q1 > m/n side the mode is purely resistive. 

As we increase q1 to q1 > 2, the m = 2 external mode at the steep part of the 
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Fig. 5.9 The growth rate of then = 1 free boundary tearing mode as a function 

of the value of q at the boundary for two values of the total pressure. The resistivity 

is 10-6
• The ideal m = 3 external kink mode and them = 2 fixed boundary tearing 

mode are shown for comparison. 

curve changes to an 'internal' tearing mode. The 'internal' mode however still has 

a finite amplitude at the boundary. In the region near q1 = 2 there is only one 

relevant rational q surface and the behavior at zero pressure is similar to that in 

cylindrical geometry. Around q1 = 3, however, the resistive m/n = 3/1 external 

mode is coupled to the m/n = 2/1 internal mode due to the toroidal geometry. 

The coupling increases the width of the region in which the resistive external mode 

is unstable. Without the coupling the marginal point of the resistive mode on the 

lower side of q = 3 would coincide. with the marginal point of the ideal mode. 

Comparing the growth rates at (Jp = 0 and (Jp = 0.26, we see that a finite 

pressure, at a resistivity of 10-6 , has no effect at all on the stability of the external 

modes. For q = m/n this is easily understood since there both the pressure and 

its gradient vanish at the rational surface. This is of course also true for q1 < m/n 

when the rational surface lies in the vacuum and the mode is basically ideal. This 

is not the case, however, at the q > m/n side. On the steep part of the curve for 

q > m/n it is not clear whether pressure stabilization is to be expected. In this 

part the mode is the resistive extension of the ideal external mode and the growth 
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rate of the mode is more determined by the current density gradient at the edge 

than by the gradient at the rational surface. 

In the flat part of the curve at /3p = 0, the internal mode is dominant. When 

we compare this with the fixed boundary case shown in Fig. 5.5, it appears that 

at /3p = 0, the influence of the vacuum is very small. The only significant change 

is that the wall-stabilization of the m = 2 mode in the range 2 < q1 < 2.2 in the 

fixed boundary case does not survive with the wall placed at 1.2 times the minor 

radius. At /3p = 0.26, the vacuum has a larger influence. Compared to the fixed 

boundary case, the maximum growth rate is increased by a factor 4. In the free 

boundary case the plasma displacement of the 'internal' mode is less restricted so 

that the mode can largely avoid the plasma compression. This causes the increase 

in the growth rate compared to the fixed boundary case. The fact that also in 

the fixed boundary case a finite f3 still reduces the growth rate shows that there 

is still a finite compression in the free boundary case. If we set 'Y to zero so that 

plasma compression does not cost any energy, then the growth rates at /3p = 0 and 

/3p = 0.26 are again identical over the whole range of q1 . 

In Fig. 5.lOa and 5.lOb we have plotted the radial profiles of the linear 

perturbation of the 'internal' mode at q1 = 2.38 and /3p = 0.26, of the free boundary 

case and the fixed boundary case, respectively. The difference in compressibility 

is clearly shown by a comparison of the relative amplitudes of v1 and the density 

perturbation p. 

To show the pressure stabilization due to the average curvature in more 

detail, we have calculated the growth rate as a function of the resistivity for a 

number of values for q1 . The results are shown in Fig. 5.11, where we have plotted 

the real part of the eigenvalue. For q1 = 2.65, the fixed boundary internal mode 

stabilizes at T/ = 1.5 x 10-s, whereas at T/ = 5 x 10-7 the mode becomes overstable. 

The corresponding free boundary mode, however, follows the tearing mode scaling 

>. ~ T/3 / 5 up to T/ ~ 10-s. The mode does stabilize eventually at T/ < 2 x 10-9 . 

Also shown in Fig. 5.11, is the T/ dependence of the resistive external mode at 

q1 = 3.00. As expected, it shows no sign of stabilization. 

The equilibria we have examined so far in this paragraph were chosen such 

that there is only one rational surface inside the plasma. This leads to equilibria 

which are characterized by a very broad current density profile with large current 

gradients at the edge. Both the ideal and the resistive free boundary mode are 

therefore very unstable. In the following part, we will examine the influence of the 

vacuum for a different class of equilibria with a relatively peaked current density 
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Fig. 5.lOa The m = 1, 2, and 3 harmonics of the normal component of the 

velocity perturbation, v1 , and of the density perturbation, p, of the free boundary 

n = 1 tearing mode at (Jp = 0.26. Them = 2 and 3 harmonics are indicated by a 

and (J. 

profile. The internal modes will then be more unstable in the central part of 

the plasma and because of the smaller current gradient at the edge, the external 

modes will be more stable. Because of the peaked current, the value of qif qo will 

be larger. For the equilibria considered qif q0 = 3.4, which means that there are 

three or four rational surfaces ( q = 2, 3, 4, and 5) inside the plasma, depending on 

the actual value of q1 . 

The equilibrium profiles of the peaked current case are given by f( ,P) = 
1 - 1.5,P + 0.5,P2 and II( ,P) = 1 - ,P. The aspect ratio is the same as before, viz. 

e = 0.25. The profiles of the pressure, the current density, and q as a function of 

the normalized minor radius are plotted in Fig. 5.12. 
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Fig. 5.lOb Them= 1, 2, and 3 harmonics of the velocity perturbation and of 

the density perturbation of the fixed boundary n = 1 tearing mode at /3p = 0.26. 

Them = 2 and 3 harmonics are indicated by a and (3. 

Because of the smaller edge current density gradients, the ideal m = 3 and 

m = 4 external modes are stable in these equilibria. We will not consider the 

m = 2 external mode since this would correspond to an equilibrium with q on axis 

of about 0.67. This means that the resistive m/n = 1/1 internal kink mode would 

be unstable. Although the coupling of the internal kink to the external modes is 

itself an interesting subject, it will not be discussed in this paragraph. The growth 

rates of the resistive modes are plotted in Fig. 5.13 for 17 = 10-6 , and /3p = 0 and 

0.26, both with the wall on the plasma and with the wall positioned at 10 times 

the minor radius. 

The growth rates of the fixed boundary case are again due to the m/n = 2/1 

tearing mode. Inspection of the eigenfunctions (not shown here) shows that, with 

the wall on the plasma, there is almost no coupling to the higher m mode numbers. 
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Fig. 5.11 The growth rate of the n = 1 free boundary tearing mode as a 

function of the resistivity for two values of q at the boundary. The fixed boundary 

m/n = 2/1 tearing mode is included for comparison. 

Removing the wall has much less influence for these equilibria compared to the 

broad current density profile case, since the m/n = 2/1 is only unstable when 

q = 2 lies in the central part of the plasma. Only when qi is close to 3, where the 

m = 3 free boundary mode becomes unstable and couples to the m = 2 internal 

mode, there is a large increase in the growth rate. An interesting point is that 

there is no sign of an unstable ideal mode at qi < 3. Them = 3 is a purely resistive 

instability which is also present when the rational surface lies in the vacuum. This 

shows that the external resistive modes can also exist without an underlying ideal 

instability. 

The effect of a small pressure is the same as in the case of a broad current 

density profile, the stabilization at 1J = 10-6 is largely due to the plasma compres

sion. For qi > 4.5 the effect of a vacuum is very small, the additional freedom 

does not affect the m = 2 mode in the central part of the plasma. Different from 

the previous case is that at qi = 3 the growth rate of the mode is now reduced by 

the pressure. This is caused by the coupling to the m = 2 which is affected by the 

pressure when q = 2 lies closer to the boundary. 

Reducing the resistivity from 10-6 to 10-7 has a large stabilizing effect on 
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the fixed boundary case (see Fig. 5.14 ). In the free boundary case the modes 

are again less easily stabilized. Notice that around q = 3 and 4, where the mode 

amplitude peaks at the plasma boundary, the reduction of the growth rate is much 

smaller since there the pressure gradient vanishes at the rational surface. 

Summarizing this section, the stabilizing effect of a finite pressure on the 

stability of then = 1 fixed boundary tearing mode is twofold. First of all, the fixed 

boundary tearing mode causes a local compression of the plasma which requires 

an energy proportional to the local pressure. The good average curvature in the 

toroidal geometry in the presence of a finite pressure gradient provides another 

source of stabilization. Removing the ideally conducting wall from the plasma to 

a finite distance away from the plasma, gives the plasma an additional degree of 

freedom. This allows tearing modes which are localized near the plasma boundary 

to become essentially incompressible, such that the stabilizing effect of the pressure 

is much smaller in the free boundary situation. The tearing modes localized in 
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Fig. 5.13 The growth rate of then= 1 fixed and free boundary tearing mode 

as a function of q at the edge for the peaked current density case for (3p = 0 and 

(3p = 0.26. The resistivity is 10-6 . The fixed boundary mode is an m/n = 2/1 

tearing mode. 

the plasma center are not influenced by the different boundary conditions. Since 

pressure gradient goes to zero at the plasma boundary, the stabilization due to the 

average curvature is also much less efficient for modes near the boundary. Thus, 

the stabilizing influence on the tearing mode, which can be very effective for modes 

in the plasma center, is not effective for tearing modes localized near the plasma 

boundary. 
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Fig. 5.14 The growth rate of then= 1 fixed and free boundary tearing mode 

versus the value of q at the boundary for different values of the resistivity for the 

peaked current density case. The ideal external kink mode is stable. 

5.3 Toroidal geometry; Shaping effects 

Many of the present-day tokamaks can be operated in an X-point configu

ration to allow plasmas in the so-called H-mode regime. In this configuration the 

plasma boundary is not defined by a contact with the limiter but by the separa

trix. In the X-point, the poloidal magnetic field is zero so that the safety factor q 

will go to infinity towards the plasma boundary. The increased shear close to the 

plasma boundary, caused by the X-point shape, will have a large effect on MHD 

modes which are localized near the boundary. Ballooning modes, for example, can 

be stabilized near the plasma edge to the extent that they do not pose a limit on 

the local pressure gradient (see section 6.1). 

The influence of the X-point geometry on the ideal n = 1 external kink mode 

has been investigated by [OzekiSS] and more extensively by [Roy90]. It was shown 

that, in general, the large shear near the boundary has a stabilizing effect on the 

n = 1 external kink mode. In a study of current and (3 limits, it was found [Roy90] 

that the presence of a single X-point in a quasi-circular equilibrium can increase 

the maximum plasma current at which the n = 1 mode is still stable considerably 

as com pared to a circular plasma. The increase of the current limit depends on 
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the poloidal position of the X-point. In the most favorable configuration the X

point is pointing upwards (or downwards). The maximum (3, stable to then= 1 

mode, is larger only in the case where the X-point is pointing upwards. At other 

orientations of the X-point, the maximum f3 is similar or even lower than in the 

circular case. The mode structure of the ideal n = 1 mode in the presence of an 

X-point becomes more localized near the plasma boundary with the plasma flow 

more parallel to the magnetic surfaces. 

In this section we investigate the influence of an X-point plasma shape on 

the stability of the n = 1 free boundary resistive tearing modes localized near the 

plasma boundary. To enable a comparison with the stability of the free boundary 

tearing in a circular plasma, we use a quasi-circular plasma with a small perturba

tion of the plasma boundary. To avoid the singularity at the X-points, the shape 

of the plasma boundary is appr::iximated by a closed flux surface just inside the 

separatrix. An example of the equilibrium flux surfaces of the X-point plasma are 

shown in Fig. 5.15a. The straight field line coordinate system used in the CAS

TOR code is not very well suited for the treatment of an X-point. The coordinate 

lines of the poloidal angle tend to bend towards the X-point in a region close to 

the plasma boundary. To obtain an accurate representation of the equilibrium 

quantities near the boundary, a non-equidistant radial grid is used with the grid 

points packed close to the plasma boundary. The equilibrium profiles of the flux 

surface averaged current density, the q-profile, and the shear(= s/qaq/as) profile 

as a function of s (= V1/}) are shown in Fig. 5.15b. For comparison, we have in

cluded the q and shear profiles for a circular plasma boundary keeping the current 

density profile fixed. The influence of the X-point is confined to a region close to 

the boundary, 0.9 < s < 1. The aspect ratio is 4, the poloidal f3 is 0.35. The 

current density gradient has a shoulder near the edge of the plasma to create a 

situation which is violently unstable in a circular plasma. 

First, we compare the growth rates of the ideal external kink mode as a 

function of the value of q at the boundary for the X-point shape of Fig. 5.15a 

and for a circular plasma. The equilibrium profiles are kept the same. The wall 

is placed at 10 times the minor radius. The resulting growth rates are shown in 

Fig. 5.16. The maximum growth rate in the X-point geometry decreases by a 

factor 2.6 and the unstable window in q1 becomes smaller at the low q1 side. This 

is in good agreement with [Ozeki88]. The poloidal components of the velocity 

perturbation in the poloidal plane are plotted in Figs. 5.17a and b. The mode 

is mainly an m = 3 mode which becomes much more localized at the plasma 

boundary by the increased shear of the X-point geometry. 
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Fig. 5.15a The flux surfaces of the X-point equilibrium. 
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Fig. 5.15b The profiles of the flux surface averaged current density, the safety 

factor q, and the shear as a function of the flux coordinate s = ,/If for both the 

circular and the X-point equilibrium. 
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Fig. 5.16 The growth rate of the ideal n = 1 external kink mode as a function 

of q at the boundary for the circular and the X-point plasma shape. 

The growth rate of the resistive free boundary n = 1 tearing mode as a 

function of the value of q at the edge is plotted in Fig. 5.18, again for a circular 

and for an X-point shape. As in the previous calculations, the resistivity is taken 

constant over the plasma radius with a value of 'I = 10-6 • The maxima correspond 

to the m = 3 and m = 4 external modes. For 3.1 < q1 < 3.8 the instability is 

mainly an internal m = 2 tearing mode. For q1 smaller than 3, the reduction of 

the growth rate of the resistive mode in the X-point geometry is similar to that 

of the underlying ideal mode. For q1 larger than 3 the influence of the X-point 

appears to be much smaller. However, the stability windows of the external modes 

are not very clear in this picture due to the coupling to the internal m = 2 mode. 

The internal and external modes can be separated if we lower the resistivity 

in the central part of the plasma. The m = 2 internal mode is then stabilized by the 

finite pressure (see section 5.2). Near the boundary (0.95 < s < 1.), the resistivity 

is constant with 'I = 10-6 . In the central part the resistivity is set to 10-12 . 

This choice of resistivity profile effectively decouples the external modes localized 

near the boundary from the internal tearing modes through the pressure/curvature 

stabilization at low resistivity (as discussed in the previous section). 

In Fig. 5.19 the growth rate of the m = 3 external mode is plotted versus 
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Fig. 5.17a Vector plot of the poloidal velocity perturbation of the ideal n = 1 

external kink mode in the circular plasma. 
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Fig. 5.17b Vector plot of the poloidal velocity perturbation of the ideal n = 1 

external kink mode in the X-point plasma. 
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Fig. 5.18 The growth rate of then = 1 free boundary tearing mode versus the 

value of q at the boundary for the circular and the X-point plasma shape. The 

resistivity is 10-6 . 

the value of q at the boundary for the circular and the X-point plasma shape. 

Shown are the growth rates of both the ideal plasma and of the plasma with the 

resistivity profile as described above. The curves for the ideal plasma are the same 

as in Fig. 5.16, where ,\2 was plotted instead of >.. For the circular plasma, the 

stability threshold at q1 < 3 is not changed by a finite resistivity. Surprisingly, 

however, for the X-point case the plasma is more stable with a finite resistivity 

as compared to the ideal plasma. This stabilizing effect can be attributed to the 

resistive boundary conditions which are more restrictive than the ideal boundary 

conditions in the sense that a surface current is not allowed. The surface current is 

replaced by a large current density in the resistive boundary layer. In the circular 

case, the radial width of the mode is much larger than the resistive boundary layer 

so that the influence of the resistive boundary conditions is very small. In the case 

of the X-point shape, the radial width of the mode is much smaller (see Fig. 5.17) 

so that the restrictive influence of the resistive boundary conditions is larger. 

For q1 > 3, where the ideal external mode is stable, the increased shear at 

the plasma boundary of the X-point plasma has no large effect. There is a small 

reduction of the growth rate but the stability window in q1 is not affected. This 
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Fig. 5.19 A comparison of the growth rates of the ideal and the resistive n = 1 

free boundary mode in both the circular and the X-point plasma. 

is also illustrated by Fig. 5.20 where we compare the growth rate of the m = 3 

mode for the circular and the X-point shape as a function of the gradient of the 

flux surface averaged toroidal current density at a fixed value of q at the boundary, 

q1 = 3.0. The gradient of the current density is changed locally between 0.8 < 
s < 1 by adding a parabolic current profile centered at s = 0.9. Extrapolating to 

zero growth rate shows that the marginally stable gradient of the current density 

is the same for both plasma shapes. 

In conclusion, the stabilizing effect of the high shear near the boundary of 

an X-point plasma is larger for the resistive version of the external mode than for 

the ideal mode, if the rational surface lies in the vacuum. This is due to the very 

small radial extent of the mode in the high shear region in combination with the 

resistive boundary conditions, which do not allow a surface current density at the 

plasma boundary (contrary to the ideal boundary conditions). The high shear has 

much less influence on the stability of the tearing mode if the rational surface lies 

inside the plasma. 
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Fig. 5.20 The growth rate of then = 1 free boundary tearing mode as a function 

of the current density gradient at the plasma boundary for the circular and for the 

X-point plasma shape. 

5.4 Conclusion 

In this chapter, some aspects have been studied of the stability of free bound

ary tearing modes in a general toroidal geometry using the numerical codes CAS

TOR and HELENA, as described in the chapters 2, 3, and 4. The additional 

freedom of the moving boundary of a resistive plasma allows the resistive version 

of the ideal external kink to become unstable. This enlarges the instability win

dow of the external kink mode in that the resistive mode, unlike the ideal mode, 

can also be unstable if the rational q-surface lies inside the plasma. This mode is 

essentially a tearing mode with a large amplitude at the plasma boundary. The 

effect of the free boundary is not limited to these external modes, it also has a 

significant influence on the stability of 'internal' modes, i.e., modes which can be 

unstable with a fixed plasma boundary. 

In the first part of the chapter, we have examined the influence of a finite 

pressure on the stability of both the fixed and free boundary tearing modes. The 

effect of the pressure appears to be twofold. The fixed boundary tearing mode 

causes a compression of the plasma. At a finite pressure, the compression costs an 

amount of energy proportional to the pressure. This has a large stabilizing effect. 
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Removing the ideally conducting wall from the plasma boundary greatly reduces 

the compression of the plasma against the wall for modes localized near the bound

ary. Consequently, the stabilizing effect of the pressure due to the compression is 

lost. 

The second effect of the pressure is due to the stabilizing influence of the 

'good' average curvature of the magnetic field lines in a torus in combination with 

a finite pressure gradient at the rational q-surface. This effect becomes larger with 

decreasing resistivity. The curvature stabilization is very effective for the internal 

tearing modes. The external resistive modes with the rational surface close to the 

plasma boundary or in the vacuum are not influenced by the curvature since the 

pressure gradient goes to zero at the plasma edge. 

In the second part of this chapter, we have investigated the effect of an X

point plasma shape on the stability of the external resistive mode. The increased 

shear near the plasma boundary in the region where the external mode is localized 

has a large stabilizing influence on the ideal external kink mode. It was shown 

that, surprisingly, a finite resistivity has an additional stabilizing effect on the 

external mode if the rational q-surface lies in the vacuum. This is attributed to 

the fact that the resistive MHD boundary conditions are more restrictive than the 

ideal ones since they do not allow surface currents at the plasma boundary. The 

effect of the X-point plasma shape is less stabilizing if the rational surface lies 

inside the plasma. 
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6. APPLICATION TO JET PLASMAS, THE ELM PRECURSOR 

The Joint European Torus (JET) is the largest operating tokamak facility to 

date. The center of the vacuum vessel has a major radius of 2.96 m. The plasmas 

typically have a minor radius (in the horizontal plane) of 1.1 m. The maximum 

vacuum magnetic field in the center is 3.45 T. In JET, operation is possible in 

both limiter and X-point configuration. In the limiter configuration, the plasma 

boundary is typically given by an ellipticity of 1.5-1.8 and a triangularity of 0.2-

0.3 (D-shaped). In the X-point configuration, with one single X-point or a double 

X-point at the top and bottom of the plasma, the plasma boundary is defined by 

the separatrix, i.e., the fluxsurface where the poloidal field goes to zero. In this 

configuration the ellipticity and triangularity are typically 1.7-1.8 and 0.3-0.40. 

An example of a JET equilibrium is shown in Fig. 6.1, where the equilibrium 

flux surfaces are plotted together with the vacuum vessel and the limiters. The 

maximum plasma currents in JET range from 7 MA in the limiter configuration to 

3.5 and 5 MA, in respectively, the double and single X-point configuration. For the 

additional heating of the plasmas, both neutral beam and ion cyclotron heating 

are used, with a maximum power of 21 and 22 MW, respectively. 

6.1 The ELM precursor 

In a tokamak plasma where the plasma boundary is determined by a sep

aratrix, the plasma can go from the so-called L( ow )-mode phase into a different 

regime called the H(igh)-mode phase. The additional heating power must exceed 

a certain threshold for the transition to occur. In the L-mode phase, the energy 

confinement time is deteriorated by the additional heating as compared to the 

confinement time in an ohmically heated plasma. The H-mode phase was discov

ered in 1982 in the ASDEX tokamak [Wagner82]. This phase is characterized by 

an increase in the energy confinement time by typically a factor 2 as compared 

to the L-mode phase. The particle confinement time is also improved during the 

H-mode phase. Experimentally, the L to H transition is marked by a drop in the 

D0 light which is a measure of the particle flux to the wall. At the transition, 

the total stored energy and the density start to increase. The improvements are 

(mainly) due to a local decrease in the energy and particle diffusivity near the 

plasma edge. As a consequence, both the temperature and the density profile 

develop large gradients near the plasma edge. The higher temperatures near the 
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Fig. 6.1 The JET plasma shape in a double X-point configuration (discharge 

# 23336, time = 55.0s). The small circles represent the flux loops, the black 

rectangles show the positions of the pickup coils. 

edge lead to a broadening of the current density profile. A disadvantage of the 

H-mode is that, with the improved particle confinement, the impurities are also 

better confined. The impurity accumulation in the plasma eventually leads to the 

end of the H-mode when the energy losses due to the radiation become comparable 

to the input power [Gianella89J. 

Due to the steepening of the equilibrium profiles near the plasma boundary 
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during the H-mode, notably the pressure profile and the current density profile, 

an MHD instability can develop near the edge of the plasma. Experimentally, this 

so-called Edge Localized Mode (ELM) is observed as a spike in the D., signal, 

accompanied by an increase in the magnetic signals. This signifies a rapid loss of 

energy and particles from the plasma edge into the scrape-off layer. Depending 

on the amplitude of the instability, an ELM expels typically 5-20% of the plasma 

energy content. This results in a degradation of the confinement time. The ELMs 

can however also be beneficial for the plasma performance. By adjusting the rate 

in which the ELMs occur, it is possible to control the increase in density and 

impurity content in the plasma. In this way, semi-stationary H-mode discharges 

have been produced [Burrel89, ASDEX90]. 

The underlying MHD phenomena of the ELM are not very well understood. 

The manifestation of the ELM depends on the equilibrium parameters and is 

different in different machines. In the DIII-D tokamak, three different types of 

ELMs have been identified experimentally [Doyle91]. 

1. The so-called giant ELMs occur in the high-/3 plasmas near the Troyon limit. 

These EL Ms are characterized by a large, more or less isolated, spike in the D a 

signal. The repetition rate of this type of ELM increases with the heating power 

and decreases with increasing toroidal current. Gohil et al. [Gohil88] showed that 

the pressure gradients near the plasma edge just before the occurrence of the giant 

ELM are close to the ideal ballooning limit. They suggested that the ELM may 

be a transient return to the L-mode triggered by the pressure gradient hitting the 

first ideal high-n ballooning stability boundary. 

2. The second type of ELM is characterized by smaller, irregular, and more 

frequent spikes in the D., signal. In DIII-D, these 'grassy' ELMs have been related 

to the second region of stability of the ideal ballooning modes. Extending the 

theoretical study of [Bishop86] to the relevant DIIl-D plasma para.meters, Ozeki 

et al. showed [Ozeki90] that near the separatrix, for large enough values of the 

ellipticity (> 1.8) and of the triangularity (> 0.4), the first stability boundary 

of the ideal ballooning modes disappears for low values of the shear. In this 

region of the plasma the pressure gradient is not limited by ballooning modes. 

Experimentally it was found that in the parameter range of the second stability 

region, the giant ELMs no longer occur. Instead, grassy ELMs are observed. The 

maximum amplitude of the pressure gradient is, however, still similar to that in the 

giant ELM discharges. Resistive ballooning modes were suggested as the modes 

limiting the pressure gradient. 

Application to JET plasmas, the ELM precursor 69 



3. Contrary to the first two types, the type-III ELM occurs at low f3. Also 

different is that, with increasing heating power, the repetition rate of the ELMs 

decreases. This type of ELM shows a clear precursor on a resistive time scale with 

a large toroidal mode number (n = 6- 12) having the largest mode amplitude on 

the outside. No explanation in terms of an MHD mode has been put forward for 

this type of ELM. 

In the PBX-M tokamak [Kaye90J, as in DIII-D, giant ELMs only occur in 

high-/3 plasmas. The giant ELMs are preceded by a high frequency precursor 

which is growing on a time scale of the order of 10 µs. Different from DIII-D, the 

pressure gradient near the edge was found to be below the ideal ballooning mode 

limit. Also, the measured magnetic signal does not have a ballooning character. A 

theoretical stability analysis of low-n ideal modes showed that, depending on the 

position of the wall, a pressure driven kink mode can be unstable. The structure 

of the mode is very global with a large m = 1 contribution in the plasma center 

and higher m numbers near the boundary. 

In the ASDEX tokamak [Zohm91, ASDEX89], the ELMs are observed when 

the pressure gradient is near the ballooning stability limit, but also when the 

pressure gradient is still low. The ELMs in ASDEX are preceded by a coherent 

high frequency precursor with large poloidal mode numbers m ~ 10 - 15. The 

growth time of the precursor just before the ELM is of the order of 50µs. The ELM 

itself is seen, apart from the spike on the D0 signal, as broadband turbulence on 

the magnetic signals. The radial position of the ELM appears to be independent of 

the total current (i.e. q.). As in DIII-D, the repetition rate of the ELMs decreases 

with increasing heating power. Stability analysis showed both the ideal ballooning 

and the ideal kink modes to be stable. 

A free boundary, resistive MHD simulation of the non-linear evolution of the 

ELM in a circular cylinder was done by [Kerner and Jacoby88]. It was shown that 

for typical ASDEX H-mode equilibrium profiles, the different poloidal harmonics of 

the pressure and current density gradient driven instabilities couple non-linearly. 

This causes an expansion of the plasma and a turbulent layer of about 10% of 

the minor radius which develops on a time scale of ~ 150 Alfven times. For 

typical L-mode profiles the amplitude of the linear modes is too small to develop 

turbulence and the plasma boundary is not perturbed. From this simulation it 

has been concluded [Zohm91] that the ELM precursor in ASDEX is a resistive 

pressure driven mode with a medium poloidal mode number (m ~ 10 - 20). The 

toroidal mode number is assumed to match the value of q at the position of the 
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large pressure gradient, i.e., n ~ 3 - 7. 

In JET, it was found recently that the ELMs show the same type of behavior 

as is found in the ASDEX tokamak. That is, a coherent exponentially growing 

precursor is observed prior to the broadband turbulent phase of the ELM itself. 

The precursors and the turbulent phases have been observed on both the magnetic 

signals and the density measurements from the reflectometer. 

The ELMs occurring at low (3 in DIIl-D, ASDEX, and JET are similar in 

their dependence on the parameters influencing the resistivity, such as the heating 

power, or active cooling of the edge by gas puffing. The ELMs appear to be more 

unstable at high resistivity. From this, one can conclude that the precursors as 

observed in ASDEX, JET, and Dill-D (type-III) are likely to be resistive modes. 

6.2 Resistive stability analysis of JETH-mode discharges 

In the H-mode discharges in JET, the ELMs do not occur very often. The 

reason for this is not clear but is probably related to the higher edge temperature 

in the JET H-mode discharges as compared to other tokamaks. In this section 

we examine the MHD stability properties of a JET H-mode discharge ( #23336) 

during which ELMs did occur. The time traces of the poloidal (3, the total heating 

power, and the Hex signal for this discharge are shown in Fig. 6.2. The ELMs can 

be observed as large spikes on the Hex signal. 

The equilibrium at the time slice t = 55.0 s is calculated with the IDENTD 

equilibrium reconstruction code [Blum86]. The time t = 55.0 s is chosen because 

the electron pressure profile as measured by the LIDAR diagnosticis is available 

at that time. The IDENTD code solves the Grad-Shafranov equation with the 

poloidal flux as measured by the 14 flux loops surrounding the plasma as a bound

ary condition. The two unknown equilibrium profiles p(,P) and F(lf;) (see section 

3.1) are determined by a least square fit of the solution of the Grad- Shafranov 

equation to the measured equilibrium data. In this case, the poloidal field as 

measured by the 18 magnetic field pickup coils and the electron pressure profile 

as measured by the LIDAR diagnostic are used. The resulting plasma shape and 

the surfaces of constant poloidal flux were shown in Fig. 6.1. The positions of the 

flux loops and the pickup coils are, respectively, indicated by the small circles and 

the rectangular boxes. The electron pressure profile from LIDAR and the profile 

obtained by the equilibrium reconstruction, shown in Fig. 6.3a, are in good agree

ment. The equilibrium profiles of the current density and the q-profile are shown 

in Fig. 6.3b. It should be stressed that the IDENTD equilibrium reconstruction 
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Fig. 6.2 The time traces of the poloidal /3, the total heating power, and the Ha 

signal of discharge # 23336. 

can give only smooth pressure and current density profiles which are in global 

agreement with the measured profiles. The local gradients can be much larger 

than the reconstructed ones. 

First, the reconstructed equilibrium is analyzed with respect to high-n bal

looning modes. For the calculation of the ballooning mode stability, we use the 

ideal MHD equilibrium and stability code, HBT [Goedbloed81, Huysmans90]. To 

determine how far the pressure gradient near the plasma boundary is from marginal 

stability to ballooning modes, the pressure gradient near the edge (0.9 < s < 1.0) 

is artificially increased up to the ballooning limit. It appears that the pressure gra

dient of the reconstructed equilibrium is at least a factor of 4 below the marginally 

stable pressure gradient at the edge. From this we may conclude that the ELMs 

in the JET H-mode discharges are not related to ideal high-n ballooning modes. 

Next, we try to establish the relevance of free boundary tearing modes in 
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Fig. 6.3a The electron pressure profile at t = 55.0 s as measured by the LI

D AR diagnostic (dashed line with diamonds), and as obtained from the IDENTD 

equilibrium reconstruction (full curve). 
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Fig. 6.3b The equilibrium profiles of the current density and the safety factor 

q as obtained by the IDENTD equilibrium reconstruction as a function of the 

normalized radius (x). 
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explaining the linear precursor of the ELMs. 

To calculate the growth rate of the resistive MHD modes, the equilibrium as 

reconstructed by the IDENTD code is reproduced with the HELENA equilibrium 

and mapping code (see chapter 3). The radial mesh of finite elements is packed near 

the plasma boundary for an accurate numerical representation of the equilibrium 

in the high shear region near the edge. 

The growth rate of the n = 1 free boundary tearing mode of the actual JET 

discharge is shown by the lowest curve in Fig. 6.4 as a function of the resistivity. 

The ideally conducting wall is placed at 10 times the minor radius, the shape of the 

wall is the same as that of the plasma boundary. The eigenfunctions of the velocity 

perturbation corresponding to the mode at T/ = 10-4 are shown in Fig. 6.5. The 

mode is shown at this relatively high value of T/ to show the structure more clearly. 

The mode consists of many overlapping harmonics, with each harmonic having 

a maximum at the corresponding rational q-surface. The width of the different 

harmonics becomes smaller with decreasing resistivity, reducing the overlap of the 

harmonics. 

3 
1 

Tl 
Fig. 6.4 Tl1e growth rate of the n = 1 free boundary tearing mode as a function 

of the resistivity for the three current density profiles shown in Fig. 6.6. The lowest 

curve, marked by (1), corresponds to the actual JET equilibrium. The labels (1), 

(2), and (3) correspond to the sanie labels in Fig. 6.6. 
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Fig. 6.5 The mode structure of the n = 1 free boundary tearing mode of 

the reconstructed JETH-mode equilibrium. Shown are the Fourier harmonics of 

velocity component normal to the fl.uxsurfaces, indicated by the numbers. The 

resistivity is 10-4 • 

The scaling of the growth rate with resistivity is close to 1)+ 1 . If we ex

trapolate the growth rate to typical values of the resistivity near the edge, 1) ~ 

10-7 -10-s for a temperature of 500 eV, the growth rate is of the order 10-4 -10-5 

Alfven times. This is far to slow to be of relevance. The mode will probably sat

urate nonlinearly at a small amplitude. 

The possible driving forces of the ELM precursor are the current density 

gradient and the pressure gradient near the plasma boundary. The usual picture 

is that during the discharge the gradients gradually increase until the gradients 

exceed a critical value and an instability is triggered. However, one can also assume 

that the instability is triggered, not by a driving force becoming too large, but by 

the reduction of a stabilizing effect. For example, a tearing mode can be stabilized 

by the good average curvature in the presence of a pressure gradient and a low 

resistivity. The mode can then be triggered by an increasing resistivity due to, 
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for example, the build up of impurities. A combination of an increasing current 

density gradient and an increase in resistivity is also possible. 
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Fig. 6.6 The three profiles of the flux surface averaged toroidal current density 

as a function of I/; as used in the stability analysis. The curve marked by (1) 

corresponds to the reconstructed JET equilibrium. 

To determine the dependence of the n = 1 tearing mode on its driving 

force, we have increased the current density gradient at the edge as compared to 

the actual reconstructed JET equilibrium. This is done by changing the FF'(I/;) 

profile locally near the plasma boundary (0.8 < Vif < 1. ). The flux surface 

averaged toroidal current density for the original equilibrium and for two cases 

with an increased gradient are shown in Fig. 6.6. The pressure profile is kept 

constant. The growth rate of the free boundary n = 1 mode of the three cases are 

shown in Fig. 6.4 as a function of the resistivity. It is clear that the growth rate 

increases with an increasing current gradient at the edge. Also, the growth rate 

decreases more slowly with decreasing resistivity. For the case with the largest 

current gradients, however, we find a different behavior as a function of resistivity. 

For this case the growth rate shows a sharp decrease at 17 = 10-6 which is due to 

the stabilization of the tearing mode by the good average curvature (see section 

5.2). The eigenmode is similar to the eigenmode shown in Fig. 6.5. 
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To show that these modes are essentially free boundary modes, we have 

calculated the growth rate as a function of the distance between the ideally con

ducting wall and the plasma boundary. The results for the case with the largest 

current density gradient for a resistivity of '1 = 10-5 are plotted in Fig. 6. 7, show

ing that the growth rate of the tearing decreases if the wall is brought closer to 

the plasma. The mode is completely stabilized if the wall is closer than 1.1 times 

the minor radius. 

As described above, the large decrease in growth rate with decreasing resis

tivity could well be related to the occurrence of the ELM precursor. However, the 

value of the current density gradient for which the mode has a significant growth 

rate and for which it shows the sharp decrease in growth rate with resistivity, 

is about a factor of two larger than the one that resulted from the equilibrium 

reconstruction. 

2.0 10-2 

1.0 10-2 

0.0 10° 
1.0 1.5 2.0 2.5 

position ideally conducting wall 

Fig. 6.7 The growth rate of the n = 1 free boundary tearing mode of the 

case with the largest current density gradient with 1J = io-5 as a function of the 

position of the ideally conducting wall. The wall position is given in units of the 

minor radius of the plasma. The wall positioned at 1.0 corresponds to the fixed 

boundary case. 

The effect of increasing the pressure gradient near the boundary on the tear

ing mode stability has been examined by locally increasing the pressure gradient 
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in the same way as was done for the current density profile. The flux averaged 

current density profile was kept fixed at profile (3) in Fig. 6.6. The poloidal beta 

is also fixed. At 1J = 10-5 , the effect of an increase in the pressure gradient with a 

factor of two with respect to the original JET equilibrium, is to reduce the growth 

rate of the n = 1 tearing mode by about a factor of two. A further increase in 

the edge pressure gradient has no influence on the growth rate. From this we can 

conclude that the pressure gradient has a stabilizing influence on the n = 1 tearing 

mode, even for relatively large pressure gradients. 

6.3 Conclusion 

The experimental data of the ASDEX, JET, and DIIl-D tokamaks suggest 

that the ELM precursors as observed during the H-mode are resistive MHD modes. 

In this chapter we have analyzed the resistive stability of a JET H-mode discharge 

with respect to the n = 1 free boundary tearing mode, to establish the relevance 

of the tearing mode with respect to the ELM precursor. 

It was shown that raising the current density gradient locally at the edge by a 

factor of two, as compared to the reconstructed JET equilibrium, an n = 1 tearing 

mode becomes unstable with a significant growth rate. This mode shows a sharp 

decrease in the growth rate with decreasing resistivity due to the stabilization by 

the average curvature and the pressure gradient. Unfortunately, there is a large 

uncertainty in the experimental determination of the current density profile. The 

limited number of parameters used for the representation of the equilibrium profiles 

in the equilibrium reconstruction leads to smooth global current density profiles. 

Locally large gradients of the current density will not be accurately reproduced. 

These large current density gradients can be due to the bootstrap current driven by 

the edge pressure gradient. In this way the pressure gradient would be destabilizing 

the n = 1 tearing mode, although in an indirect manner. 

In this chapter we have discussed the n = 1 tearing mode. A more complete 

picture of the stability of the resistive low-n modes in the H-mode discharges would 

also require the n = 2 and n = 3 modes to be analyzed. For the higher n modes, 

the influence of the pressure gradient is probably more destabilizing and the modes 

will be more like low-n resistive ballooning modes. 

In conclusion, although knowledge on the current density profile becomes 

increasingly available, the accuracy is not yet sufficient to prove or disprove the 

presence of local current gradients large enough to drive a free boundary resistive 

mode. Consequently, rather than confirming experimental results, the calculations 

presented are of a predictive nature, deriving conditions under which external 

resistive modes can be expected. 
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7 DAMPING OF GLOBAL ALFVEN WAVES DUE TO RESONANT ABSORPTION 

The normal mode code CASTOR was also used for the spectral analysis of 

2D fusion plasmas. Hereby, special attention was given to the continuous part of 

the ideal MHD spectrum of tokamak plasmas. For this purpose, a new numer

ical code, CSCAS, has been developed which turned out to be an indispensable 

tool for the study of the continuous part of the ideal MHD spectrum and of the 

so-called toroidicity-induced Alfven eigenmodes, also called 'gap modes' because 

the frequencies of these global Alfven modes are located in gaps in the contin

uous spectrum. We quantified the damping of such gap modes due to resonant 

absorption. 

7.1 Introduction 

The gross macroscopic properties of a plasma concerning equilibrium and 

stability are well described by the theory of magnetohydrodynamics (MHD). In 

tokamak discharges the plasma evolves through a sequence of MHD equilibria, 

where the maximum pressure is limited by the stability-, or beta-, limit given by 

ideal MHD. Non-ideal effects, such as resistivity or viscosity, allow development of 

slower and weaker instabilities and introduce finite damping in the system. 

Additional plasma heating in the form of neutral beam injection or ion cy

clotron resonance heating can introduce a strong anisotropy in the plasma pressure. 

A major effect of energetic ions generated by this heating is the destabilisation of 

marginally stable ideal MHD modes leading to a burst-like loss of these energetic 

particles. A prominent example of such an event is the fishbone instability. On 

the other hand, the interaction of energetic ions and a global MHD mode can lead 

to enhanced stability. The m = 1 mode has been studied extensively. For more 

details we refer to a recent review [Porcelli91 J. 

Additional heating is not the only mechanism to generate energetic particles. 

The fusion of tritium and deuterium ions produces high-energy a-particles. The 

confinement of these fusion born a-particles is essential for ignition and hence 

for the possibility of generating energy by controlled fusion. It has been argued 

by [Cheng] that these a-particles can destabilise global Alfven modes and, hence, 

are lost by the particle-wave resonance. On the other hand, global Alfven modes 

experience finite damping in such tokamak plasmas. Since the energetic particles 

are expected to excite global Alfven waves, the corresponding energy can also get 
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heating. In order to find out whether the destabilisation of the global Alfven waves 

by the a-particles dominates the damping of these modes by phase-mixing, or vice 

versa, it is essential to obtain a deeper insight in the Alfven spectrum of toroidal 

systems. Therefore, the ideal MHD continuous spectrum needs to be determined 

for such plasmas and the global Alfven modes need to be studied in detail. Here, 

we discuss the results of our investigations of the poloidal mode coupling in the 

ideal MHD continuous spectrum, the interaction of the global Alfven modes with 

the continuum modes, and the resulting damping of these modes by phase-mixing. 

7.2 Toroidal Alfven Spectrum 

7.2.1 Continuous spectrum 

In ideal MHD the Alfven spectrum of tokamak plasmas comprises both dis

crete and continuous spectra. The corresponding continuous "normal" modes are 

characterised by non-square integrable singularities. We have found an extremely 

convenient way for computing the continuous sub-spectra. This numerical method 

was applied to CASTOR which resulted in the program CSCAS. Details on the 

numerical method and on CSCAS are given in appendix C. The continuous spectra 

shown below, are all calculated by means of the program CSCAS. 

The plasma density has been assumed constant so far. For the study of the 

toroidal Alfven spectrum and the damping of gap modes due to resonant absorp

tion, we introduced the following density profile in CASTOR and in CSCAS : 

Po(r) = {1-(1- D)s 2
}", (7.1) 

determined by the two parameters D and v. Hence, the density at the plasma 

surface is given by D". 

We first consider a circular cross-section equilibrium with aspect ratio C 1 = 

2.5, a safety factor increasing monotonically from q0 = 1.10 on the magnetic axis to 

qs = 2.66 at the plasma surface (as indicated in Fig. 7.la) and with a small pressure 

(3p ~ 2% and f3 ~ 0.06%. The density is only slightly varying with D = 0.5 and 

v = 2 in Eq. (7.1). The toroidal wave number is chosen as n = -1 and five 

poloidal harmonics are included, viz. m = 0, 1, 2, 3, and 4. Part of the continuous 

spectrum is displayed in Fig. 7. la. The profiles of the local Alfven frequencies are 

shown in dependence of the radial coordinate s. The dominant poloidal Fourier 

harmonic is indicated on each continuum branch. The slow magnetosonic continua 

are in this case close to the origin (as a consequence of the considered low plasma 
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Fig. 7.1 a) The ideal MHD continuous spectrum, in particular local Alfven and 

slow magnetosonic frequencies versus s for a circular cross-section toroidal plasma 

with E = 0.4, q0 = 1.10, qs = 2.66, and {3p ~ 2%. The density varies according 

to Eq. (7.1) with D = 0.5 and v = 2. The wave numbers are chosen as n = -1, 

and m = 0, 1,2,3, and 4. b) Corresponding part of the full ideal MHD spectrum as 

obtained by using CASTOR (N.p = 21, same wave numbers). 

pressure), whereas the frequencies of the Alfven continuum modes readily exceed 

unity. 

The branch of the predominantly m = 1 (or m = 2) mode extends with 

increasing s from Im(>.) = 0.10 to Im(A) = 1.64 (or from Im(>.) = 0.82 to 

Im(A) = 0). There is a finite gap around Im(>.) ~ 0.5 induced by poloidal 

mode coupling. The mode coupling between the m = 1 and m = 2 components 

is the strongest at s = 0. 72, where the safety factor is q = 1.50. The resulting 

gap in the continuous spectrum reaches from Im(>.)= 0.33 to Im(>.) = 0.65. In 

the cylindrical limit (E = 0) this coupling between the m = 1 and the m = 2 

mode vanishes producing two independent continua for m = 1 and m = 2 with a 

degenerate continuum frequency at the rational surface where q = 1.50. Near the 

plasma boundary, at the rational surface where q = 2.5 ( s = 0.98), toroidicity

induced poloidal mode coupling between the m = 2 and the m = 3 modes causes a 

similar 'avoided crossing' in the continuum branches of the predominantly m = 2 

and 3 components. The resulting gap in the continuous spectrum overlays the 

previous one and reaches from Im(>.) = 0.23 to Im(>.) = 0.73. Three other 
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gaps are visible in the window shown in Fig. 7.la, one around Im(>.) = 1.0 and 

two around Im(>.) = 1.5. These gaps are much smaller than the previous ones 

because they result from the coupling of 'non-neighbouring' poloidal modes, i.e. 

I m-m'I "' 1. As the mode coupling is gradually weaker with increasing I m-m'I, 

the corresponding gaps are gradually smaller. The gap at s = 0.91, for instance, is 

due to the coupling of the m = 1 and 3 harmonics, which is strongest at q = 1.0. 

This gap is smaller than the previous ones : it reaches from Im(>.) = 0.94 to 

Im(>.) = 1.11. Still smaller are the two gaps around Im(>.) = 1.5 : one at 

s = 0.72, reaching from Im(>.) = 1.48 to Im(>.) = 1.50, and one at s = 0.98, 

reaching from Im(>.) = 1.51 to Im(>.) = 1.60. These gaps are due to the next 

higher order in the mode coupling, namely between the m = 0 and 3 components 

at s = 0.72 (where q = 1.5) and between them= 1 and 4 harmonics at s = 0.98 

(where q = 2.5). 

Fig. 7 .1 b displays the corresponding part of the full ideal MHD spectrum 

computed with CASTOR with only 21 radial grid points and for the same poloidal 

mode numbers. Of course, CASTOR can not determine the internal structure of 

the continuous spectrum, i.e. the radial profiles of the local Alfven frequencies. 

Instead, the projection of these profiles on the imaginary >.-axis is obtained with 

CASTOR. The continuous part of the spectrum as well as the related gap structure 

corresponds satisfactorily for the two procedures. For a full agreement, of course, 

the same number of radial grid points should be provided in both procedures, which 

would require the inverse iteration technique for one eigenvalue at a time as the 

QR algorithm, which diagonalises the entire matrix, is then no longer applicable 

because of its enormous memory requirements. Nevertheless, it is evident from 

Fig. 7.la and b that the two spectra agree well on the continuum branches. The 

apparent discrepancy near Im(>.) :S 0.94 and 2.0 is due to the coarse grid in the 

complete solver using only N.p = 21 grid points and thereby resolving only few 

continuum modes. For Fig. 7.la the reduced eigenvalue problem was solved on 

400 (equidistant) magnetic flux surfaces. 

7.2.2 Discrete global modes 

Inspection of the location of the singular surfaces of the continuum modes 

reveals indeed full agreement with the sub-spectra in Fig. 7 .la. This confirms 

the existence of "forbidden zones" in the eigenvalue plane as can be established 

easily in the large-aspect ratio limit by keeping at least two Fourier harmonics. 

Fig. 7.lb reveals, in addition, the existence of discrete global modes within these 

forbidden zones, here for Im(>.) = 0.39 and Im(A) = 0.95. The Real part of the 
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Fig. 7.2 Radial dependence of the Fourier harmonics of the rvr-component of 

the eigenfunction of the discrete Alfven mode with a frequency located in the basic 

gap shown in Fig. 7.1 (as indicated in Fig. 7.lb). 

rvr-component of the eigenfunction of the discrete Alfven mode in the basic gap is 

shown in Fig. 7.2. In addition to the expected m = 1 and 2 components them= 3 

and 4 components show up too, with a smaller amplitude due to the small aspect 

ratio (€ = 0.4). It is evident that the discrete gap mode extends throughout 

the plasma. This indicates that the mode coupling allows the construction of 

discrete normal modes, which avoid the jumps and singularities that are present 

in the cylindrical limit ( c 1 = oo) and which satisfy the boundary conditions. 

An immediate conclusion is that there should be more than one discrete global 

mode with this property as many poloidal modes couple. We expect an entire 

class of global Alfven modes with increasing number of radial nodes. On the other 

hand, not in every gap such a global mode occurs. Gap modes only appear when 

the poloidal mode coupling is strong enough. For instance, in Fig. 7 .1 such a 

mode is missing in the small gap ('small' because of weak mode coupling) around 

Im(>.) = 1.5. But, as we will see, even with strong mode coupling the resulting 
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Fig. 7 .3 Relative distance of the frequency of the gap mode from the lower edge 

of the gap versus the (poloidal) plasma beta. Here E = 0.4, qo = 1.2, D = 0.01, 

v = 2, n = -1, and m =0, 1, 2, 3, and 4. 

gaps can be 'empty'. 

The frequencies of these discrete gap modes and, hence, the position of these 

frequencies in the gaps, depend clearly on the specific equilibrium. By changing 

the equilibrium parameters, for instance by increasing the pressure and/or by 

decreasing the inverse aspect ratio E-I ---> 1.0, the eigenvalue corresponding 

to the gap mode can even be 'pushed' outside the gap. This is demonstrated 

in Fig. 7.3 where a set of equilibria is considered with increasing pressure. In 

Fig. 7.3 the relative distance of the gap mode frequency to the lower edge of the 

gap in which it is located, is displayed versus the poloidal plasma beta, /3p, of the 

equilibrium. It is seen that the gap mode shifts towards the lower edge of the gap 

as the plasma pressure is increased. For /3p = 1.27 the mode sits on the lower edge 

of the gap and for still higher plasma pressure disappears out of the gap into the 

continuous spectrum where it couples to the continuum modes. 

In order to demonstrate the other extreme, namely the fact that a single gap 

can contain more than one global mode at once, we found it more effective to vary 

the aspect ratio. We enhanced the poloidal mode coupling due to toroidicity by 

increasing the toroidicity effect, i.e. by increasing the inverse aspect ratio of the 

equilibrium. As a result of the increasingly stronger mode coupling the gap size 

gradully increases as illustrated in Fig. 7.4, where the lower and upper edges of 

the basic gap are plotted versus the inverse aspect ratio E. Also indicated here are 

the corresponding frequencies of the discrete gap modes found in this gap. When 

the gap is wide enough, i.e. when the poloidal mode coupling is strong enough, 

a second gap mode appears in the basic gap. For the case shown in Fig. 7.4 this 

84 Toroidal Alfven Spectrum 



;; 
E 

1 . 0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 

•• •• 
_, .. •' 

0.2 0.4 0.6 0.8 1 .0 
Inverse aspect ratio 

Fig. 7.4 Width of the basic (m = 1 and 2) gap and frequencies of discrete gap 

modes therein versus the inverse aspect ratio. The other parameters are chosen as 

qo = 1.05, D = 0.5, v = 2, n = -1, and m =0, 1, 2, 3, and 4. 

happens for E = 0.6. We made a convergence study of the frequency of this second 

gap mode for E = 0.8, both in N.p and Nm, in order to check whether this second 

gap mode is not an artefact caused by a too low resolution or a too small number 

of Fourier harmonics (for E = 0.8 the poloidal mode coupling is quite strong and 5 

modes do not suffice to represent the mode accurately). We went up to 100 radial 

intervals and 11 Fourier components (m = -3-> 8) and obtained full convergence 

with the frequency still in the gap which proves that there are indeed two modes 

in this gap. The second gap mode looks different than the first one which looks 

very similar to the mode shown in Fig. 7.2. The dominant m = 2 component of 

this mode has one radial node in the rvr-component in contrast to the first gap 

mode. This mode also has a different parity in the Fourier harmonics. For the 

mode shown in Fig. 7.2, all coefficients of the Fourier harmonics have the same 

sign whereas for the second gap mode, these signs are not all the same. The same 

applies to the other components of the eigenfunction. The m = 2 contribution 

is dominant and all coefficients of Fourier modes with m > 2 have the same sign 

as the m = 2 component, while those of the harmonics with m < 2 all have the 
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Fig. 7.5 a) Structure of the ideal-MHD continuous spectrum for n = -3 and 

m =2, 3, 4, 5, and 6, q = 1.05 and a density profile given by Eq. (7.1) with 

D = 0.05 and v = 1. b) Corresponding part of the full ideal-MHD spectrum 

obtained by using CASTOR (N.p = 21). 

opposite sign. 

7.2.3 High-n cases 

A gradually more complex gap structure emerges in the continuous spectrum 

for a stronger magnetic shear, stronger density variation and higher toroidal mode 

number. Again the circular cross-section tokamak with aspect ratio E-
1 = 2.5 

is analysed having small pressure and a safety factor increasing from q0 = 1.05 

on axis to qs = 2.54 on the surface. Now, the toroidal wave number is chosen as 

n = -3 and the poloidal wave numbers are m = 2, 3, 4, 5, and 6. The density profile 

considered here is given by equation (8) with D = 0.05 and v = 2. The continuum 

structure and the corresponding part of the entire ideal-MHD spectrum are shown 

in Figs. 7.5a and 7.5b, respectively. The q(if)-profile is also indicated in Fig. 7.5a. 

Again, the numbers on the continuum branches indicate the dominant Fourier 

harmonic for that continuum branch. Three overlaying gaps with Im(>.) ~ 0.5 

occur : near s = 0.4 7 where q = 7 /6 and m = 3 and 4 couple strongly, near 

s = 0.78 where q = 1.5 and m = 4 and 5 couple strongly, and nears= 0.89 where 

q = 11/6 and m = 5 and 6 couple strongly. From Fig. 7.5b it is clear that two 

discrete, global Alfven waves exist in these gaps. The ideal MHD eigenfrequencies 
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Fig. 7.6 Radial dependence of the Fourier harmonics of the real part of the 

rvr-component of the gap mode with Im(,\) = 0.46 as indicated in Fig. 7.5b. 

of these two modes are indicated in Fig. 7.5b and the rvr-components of the 

eigenfunction corresponding to the one with the lowest frequency is displayed in 

Fig. 7.6. Two other gaps occur around Im(>.) = 1.0 due to the coupling of 

the m = 3 and 5 modes (at the q = 4/3-surface) and the m = 4 and 6 modes 

(at the q = 5/3-surface). The calculation of the ideal MHD spectrum by means 

of the QR algorithm seems to suggest the existence of a global wave inside the 

m = 3,m = 5 gap (see indication on Fig. 7.5b). This, however, is a consequence 

of the low spatial resolution imposed by the enormous memory requirements of 

the QR algorithm. An inverse vector iteration with higher resolution (N,p = 101) 

reveals that the indicated frequency corresponds to a continuum mode and not to 

a global mode. Indeed, the m = 4, 5 and 6 continuum branches in the outer part 

of the plasma cover the m = 3, m = 5 gap at the q = 4/3-surface (see Fig. 7.5a). 

The low spatial resolution used to produce Fig. 7.5b is responsible for the bad 

representation of these continuum branches. Hence, only two gap modes are found 

in this configuration. In contrast to the previously shown gap modes, these global 

Damping of global Alfven waves due to resonant absorption 87 



2.00 • ' • ' • • • • I • • • 10 • • 
' ' • • • • .. 
• ' 

.. . 
1 .50 

« E 1 .oo 

0.50 

0.00 
0.0 

4 
7 

4 7 

q 

.. • • { .. • 
" . ' . ' .. ' • • .. 
• • " ' ~ \ 7 • ' " \' .. 

' ... 
• • •• • • 

J._ )(K 'le 

/' (', /\ n :~: 
)( )( . )( . 
• 9 • \I 

7 8 l \j 
5 \... ··6 v 

6~ '-/ 

0.2 0.4 0.6 0.8 1. 0 
s 

Fig. 7. 7 Structure of the ideal-MHD continuous spectrum for n = -5 and 

m = 3 ---+ 13, qo = 1.05 and a density profile given by Eq. (7.1) with D = 0.1 and 

v = 1. 

modes interact now with the continua because the gaps in which they are located 

are now overlayed by one or more continuum branches which is a consequence of 

the steep density profile near the plasma surface (D = 0.05). The two discrete 

global modes in the lower gaps both exhibit a singular m = 6 component due 

to coupling to the m = 6 continuum branch that is overlaying these gaps (see 

Fig. 7 .5a ), whereas the regular gap modes are mainly due to coupling of the m = 3 

and 4 and of the m = 4 and 5 harmonics, respectively. The consequences of the 

coupling between the discrete global modes and the (singular) continuum modes, 

yielding singular parts in the eigenfunctions, is discussed in the next Section. 

An even more pronounced gap structure is obtained for n = -5 as shown 

in Fig. 7.7. Here the equilibrium parameters are chosen such that the interaction 

of the gap modes with the continua are not pronounced. In Fig. 7.7 many more 

gaps occur as compared to the previously shown continua. This is a consequence 

of the higher I nf-value. Remember that the gaps occur in toroidal plasmas on 

the rational surfaces where q = -(m + m')/2n as a result of the cancellation of 

the one-dimensional degeneracies on those surfaces. For higher n-values there are 
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gradually more of such rational surfaces and, hence, there are gradually more 

gaps in the continuous spectrum. In Fig. 7.7 even 8 overlying gaps occur around 

Im(>.) = 0.5 due to coupling of them = 5 and them = 6 branch at s = 0.32 

(where q = 11/10), the m = 6 and the m = 7 branch at q = 13/10, etc. The 

same scenario is repeated around Im(>.) = 1.0 due to the (higher order) coupling 

of dominant modes with a poloidal mode number that differs by 2 (m = 5 and 7, 

6 and 8, etc.). Notice also in Fig. 7. 7 that the width of the gaps depends clearly 

on the magnetic shear : the gap size increases with increasing q-values. 

The findings of this Section reveal that for tokamak configurations there ex

ist gaps, i.e. forbidden eigenvalues, in the ideal MHD continuous spectrum. These 

gaps are due to toroidal effects which couple continuum branches with different 

poloidal wave numbers m and m'. This coupling is the strongest at the rational 

surfaces where the corresponding one-dimensonal continuum frequencies are de

generate, i.e. where q = -(m + m')/2n. The effect of the mode coupling is to 

cancel these degeneracies which results in 'crossing avoidances' and, hence, gaps. 

In addition, there exists a class of discrete global Alfven modes with eigenfrequen

cies within these gaps due to toroidal coupling. 

7.3 Damping of Global Alfven Waves 

Regular discrete Alfven modes possess a well defined frequency and in such 

a mode every part of the plasma oscillates with this particular frequency. For a 

continuum mode, on the other hand, it holds that the normal component of the 

velocity is damped like l/t : 

(7.2) 

whereas the tangential components execute undamped oscillations : 

(7.3) 

These components undergo completely uncoordinated oscillations, where each plas

ma layer oscillates with its own local Alfven frequency. If the plasma is continu

ously excited periodically at such a continuum frequency, phase-mixing takes place 

until eventually after a time rss a steady state is reached and the entire plasma 
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oscillates with the same driving frequency w = wd. As a consequence of the phase

mixing, the oscillation of neighbouring flux surfaces with different local Alfven 

frequencies gets out of phase and large gradients build up around the plasma layer 

where the local Alfven frequency matches the frequency of the external driver. 

In this resonant layer dissipative effects become important. Hence, the damping 

of Alfven waves by phase-mixing is essentially due to the inhomogeneity of the 

equilibrium in ordinary space and is analogous to Landau damping which results 

from the inhomogeneity of the equilibrium in velocity space. The efficiency of 

plasma heating by phase-mixing or resonant absorption is completely determined 

by the presence of global discrete modes with a frequency in the range of the ideal 

continuous spectrum. These modes play the role of energy-carrier and transport 

the energy supplied by the external source from the plasma surface, through the 

magnetic surfaces, to the resonant layer. As shear Alfven waves propagate only 

along magnetic field lines, resonant absorption is highly inefficient without such 

a damped global mode. Since the ideal MHD differential operator is Hermitian, 

there exist no eigenfrequencies with both a non-vanishing real and imaginary part. 

Therefore, this mode of plasma oscillation does not correspond to a normal mode 

in ideal MHD and is consequently called a "quasi-mode" or "collective mode". In 

a previous paper [Poedts91] it has been shown that the ideal quasi-modes corre

spond to weakly damped eigenmodes of the resistive-MHD differential operator. 

Moreover, in the limit of vanishing plasma resistivity, the damping of these resis

tive eigenmodes remains finite and becomes independent of the plasma resistivity. 

Hence, these resistive eigenmodes converge to their ideal-MHD analogues in the 

limit of vanishing T/· It is emphazised that this does not hold for the Alfven contin

uum modes. In resistive MHD, the ideal continuum is replaced by a set of discrete 

resistive eigenvalues which lie on well-defined curves in the complex A-plane. With 

a finite number of exceptions these resistive eigenmodes do not converge to the 

ideal MHD continuum modes in the limit of asymptotically small resistivity. 

In the following we will construct global Alfven modes interacting with con

tinuum modes by choosing the equilibrium parameters such that there is a con

tinuum branch overlaying the gap, so that the gap mode frequency corresponds 

to the local Alfven frequency of at least one magnetic surface. In analogy to the 

calculation in cylindrical geometry the singularity in the equations is removed by 

including finite resistivity. Again, the resulting damping is determined by comput

ing Re( A) in a resistive plasma and then decreasing the plasma resistivity. Since 

the damping becomes independent of the actual value of the resistivity in the limit 

of vanishing ry, we are again dealing with quasi-modes but this time in toroidal 
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Fig. 7.8 Structure of the ideal-MHD continuous spectrum for n = -1 and 

m = 0--+ 4, q0 = 1.10 and a density profile given by Eq. (7.1) with D = 0.01 and 

v = 2. 

systems. It has been shown above how the gap structure is changed by varying 

the magnetic shear and the density profile. By changing the constant D for the 

equilibrium studied in Fig. 7.1 from D = 0.5 to D = 0.01, the density decreases 

strongly in the outer part of the plasma causing a strong increase in the local 

Alfven frequency. The resulting gap structure is displayed in Fig. 7 .8. There is 

only one gap visible in the window shown in Fig. 7.8. It results from a crossing 

avoidance of the two continuum branches with, respectively, m = 1 and m = 2 as 

dominant Fourier harmonic and extending from Im(>..)= 0.525 to Im(>..)= 0.819. 

A global Alfven mode is found with Im(>..) = 0.58 (in the gap). Notice, how

ever, that due to the strong density decrease in the outer part of the plasma, the 

m = 2 branch increases again in this part of the plasma and overlays the gap. 

As a result, the gap mode frequency matches now a continuum frequency on the 

m = 2 branch near the boundary. Next, it has to be examined how the results 

and, in particular, the damping that follows from the coupling to the continuum 

modes, depend on the actual value of 71. In Fig. 7.9 a convergence study of the 

damping (I Re(>..)I) of the gap mode indicated in Fig. 7.8 is presented. This figure 

Damping of global Alfven waves due to resonant absorption 91 



- 10° 
l 
"' c 
·-
"-
E 

A N, 5 1 m -"' B N• 1 0 1 • > c N• . 2 0 1 

- D N, 4 0 1 m 
-;; 10· 1 E N• 6 0 1 
cc F N, 8 0 1 

10" 2 '-;:--1.-1...LLLJJ.lL.---L-1...Ll.lJJllL~L-J-'-LI.1llL,--_L_L.L..LJJlll1~..L.LJ..U.lilJL___J_..LLJ.JlillJ 
101 101 1~ 1~ 

Magnetic Reynolds number 

Fig. 7.9 Relative damping versus plasma resistivity for the mode indicated in 

Fig. 7.8 and for different values of N.p. This convergence study shows the need 

for a sufficiently high resolution in the resistive layer in order to get the damping 

correct. 

shows in fact two kinds of convergence at once, viz. convergence of the damping 

for T/ ---+ 0 and, for each value of ry, convergence with respect to the N.p. The 

plasma resistivity T/ was varied over four orders of magnitude from 10-4 to 10-8 

and the damping has been computed with 51, 101, 201, 401, 601, and 801 spatial 

grid points in radial direction for each value of T/· It is clear that sufficiently many 

radial mesh points are required for properly resolving the (nearly-singular) layer 

around s = 0.94. It is also clear that this resolution has to be higher for lower 

values of the plasma resistivity since the layer is narrower than. This qualitative 

picture is indeed confirmed and quantified in Fig. 7.9. For T/ = 10-4 and 10-5
, 

51 radial grid points are sufficient and increasing the resolution just yields exactly 

the same damping. For T/ = 10-6 , however, 101 radial mesh points are needed 

to get the damping right and for T/ = 10-7 we need N.p 2 201. For T/ = 10-s 

the damping becomes idependent of the spatial resolution for N.p 2". 601. The 

oscillatory frequency stays at Im(>.) = 0.58 and the real part of the frequency 

converges to Re(>.)= -1.99 x 10-2 , thus the relative damping factor, defined as 
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b =I ~~t]) I, is 3.4%. It is evident that we have a well defined result for 1) '.::'. 10-6
. 

So far the possible strong damping for global toroidal Alfven waves has been 

demonstrated. When this mode is excited by energetic particles the absorption of 

the corresponding energy takes place near the plasma boundary in the two simu

lations shown so far. It is natural to conjecture that this absorption should also 

occur near the centre, if the equilbrium profiles are chosen such that a resonance 

can occur there. An interesting configuration is generated by choosing q on axis as 

qo = 0.8 and qs = 1.84 in the previously examined low pressure equilibrium with 

the density sharply falling at the edge, D = 0.01 and v = 2 in Eq. (7.1). When 

the toroidal wave number is n = -3 and the poloidal harmonics m = 1 to 7 are in

cluded, the corresponding toroidal continua yield a wide gap around s ::::: 0.8 where 

q = 1.16. This gap is generated by the strong coupling of them= 3 and 4 Fourier 

harmonics. This coupling should take place for q = -(m + m')/2n = 7 /6 = 1.16, 

which is indeed confirmed by the results shown in Fig. 7.10. A global Alfven mode 

exists with an eigenvalue Im(>.) '.::'. 0.96 well within this gap. This global mode 

interacts with the m = 2 continuum branch at s = 0.47, with the m = 4 contin-
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Fig. 7.11 Relative damping versus plasma resistivity for the mode indicated in 

Fig. 7.10 and for different values of N,µ again showing the need for a sufficiently 

high resolution in the resistive layer in order to get the damping correct. 

uum branch at s = 0.92, and with the two m = 5 continuum branches at s = 0.96 

and at s = 0.97. The corresponding ideal eigenfunction exhibits a global struc

ture with predominantly m = 2, 3, and 4 harmonics and with 4 singular layers 

at s = 0.47 (m = 2 branch), at s = 0.92 (m = 4 branch), and at at s = 0.96 

and s = 0.97 ( m = 5 branches). Again the singularity of the ideal case 'f/ = 0 is 

coupled to several Fourier components. The convergence study for asymptotically 

small resistivity, shown in Fig. 7.11, reveals that the damping remains constant 

for 'f/ smaller than 10-6 . Now, four basic singularities at four distinct positions 

have to be resolved accurately. This requires a large number of radial grid points 

for resolving these four resistive layers in the limit of vanishing resistivity, e.g. 

up to N,µ 2': 801 for 'f/ = 10-s. Apart from this increased computational effort, 

the results emerge very clearly. For asymptotically small dissipation the damping 

becomes independent of dissipation and remains finite, i.e. limq~ o 5 = 9.5%. 

In this case, where resonant absorption takes place at four distinct locations, the 

damping is indeed large. 
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7.4 Conclusions 

We have studied the Alfven spectrum of axisymmetric tokamak plasmas. In 

contrast to the determination of the continuous part of the ideal MHD spectrum 

of plasmas with cylinder symmetry, the determination of the ideal continuum of 

toroidal plasmas is not trivial. The toroidal curvature induces a poloidal mode 

coupling which is the strongest on rational surfaces where the cylindrical contin

uum frequencies are at least four-fold degenerate. The effect of the mode coupling 

is to remove these degeneracies which gives rise to 'avoided crossings' and, by 

consequence, 'gaps' in the continuous spectrum of finite aspect ratio tokamaks. 

The size of these gaps is proportional to the strength of the poloidal mode cou

pling and the appearance of the gaps stresses the importance of two-dimensional 

effects, e.g. for Alfven wave heating, since complete frequency bands that yield 

resonant absorption in one-dimensional (cylindrical) models are not eligible for 

this heating mechanism in the more realistic two-dimensional equilibrium models. 

When the poloidal mode coupling is strong enough, global Alfven modes are found 

with a frequency in the above mentioned gaps. These 'gap modes' might play an 

important role in controlled thermonuclear fusion as they can be destabilized by 

interaction with (fusion born) a-particles. These a-particles - whose confinement 

is essential for ignition and hence for the possibility of generating controlled fusion 

energy - are lost by particle-wave resonances. However, the interaction of these 

gap modes with ideal continuum modes causes phase-mixing so that these modes 

are damped by the same resonant absorption mechanism that enables Alfven wave 

heating. The important question now is which of the two phenomena - destabi

lization by interaction with a-particles or damping by interaction with continuum 

modes - is dominant. In the present paper, we were able to quantify the damping 

of the gap modes due to resonant absorption. The internal structure of the ideal 

Alfven continuum is very complex in tokamak plasmas and the gaps that occur 

at the rational surfaces are 'covered' by one or several continuum branches over

laying the gaps. As a consequence, the gap modes interact with the continuum 

modes with the same frequency and are damped by phase-mixing. Hence, the gap 

modes become quasi-modes in ideal MHD. Upon studying these modes in resistive 

MHD numerically by utilising the code CASTOR, we were able to show that, for 

asymptotically small resistivity, the damping of the global gap modes is finite and 

independent of '7· We presented cases where the ratio of the real (damping) and 

imaginary (oscillatory) part of the frequency of the gap modes is of the order of 

10% in the ideal-MHD limit. 
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The existence of TAE modes and their destabilization by neutral beam injec

tion has been demonstrated in TFTR [Wong91] and in DIII-D [Heidbrink91]. In 

both experiments the pressure due to the energetic particles, f3hot, had to exceed 

the analytic threshold by one order of magnitude in order to produce the predicted 

instabilities. This clearly indicates that the plasma exhibits a certain damping, 

most probably in the form of resonant absorption as considered here. A damping 

in the order of {j l':j 0.5-1 % can easily explain the observed increased threshold for 

f3hot. Further detailed studies have to be performed to show whether the damping 

can yield indeed re-absorption of the energy near the plasma center and whether 

the high damping rates with {j l':j 5 - 10% can be realised by appropriately modi

fying the density profiles. In this context, experiments with pellet injection are of 

great interest. 

96 Conclusions 



8. GENERAL CONCLUSIONS 

An important subject in the tokamak research program is the study of the 

equilibrium and stability with respect to large scale motions of the plasma. The 

MagnetoHydroDynamic (MHD) theory, which models the plasma as a fluid in a 

magnetic field, provides a good description of these motions. The relative simplic

ity of the MHD equations allows for the (numerical) calculation of the stability of 

the plasma in the complicated geometry of a tokamak. 

The subject of this report is the numerical study of ideal and resistive MHD 

·instabilities in tokamaks. Most studies of resistive instabilities in a general toroidal 

geometry have been limited to modes which do not perturb the plasma boundary 

so that a number of interesting experimental and theoretical problems have not 

been studied. The main theme of this report is the stability of free boundary 

resistive modes in a fully toroidal geometry. 

The CASTOR code (chapter 2) is used to solve the linearized resistive MHD 

equations for general axisymmetric equilibria. The eight variables are discretized 

using quadratic and cubic finite elements in the radial direction and a Fourier 

representation in the poloidal angle. The Galerkin method used results in a non

Hermitian eigenvalue problem with large sparse matrices. Inverse vector iteration 

is used for the calculation of single eigenvalues, whereas the QR algorithm can be 

used to calculate the complete spectrum of complex eigenvalues. 

For the calculation of the growth rates of instabilities, it is essential to start 

from an accurate solution of the equilibrium equations. For this purpose, we 

have written a new equilibrium code called HELENA (chapter 3). The poloidal 

plane bounded by the plasma boundary curve is discretized by an isoparametric 

mapping using bicubic finite elements. By representing the poloidal flux in terms 

of the same two dimensional finite elements, very accurate solutions are obtained. 

With this representation the magnetic field is continuous. By adjusting the nodes 

of the isoparametric mapping the final solution is obtained in flux coordinates. 

To enable the calculation of modes which perturb the plasma boundary with 

the CASTOR code, the plasma-vacuum boundary conditions and the numerical 

solution of the vacuum magnetic field equations have been implemented in the 

CASTOR code (chapter 4). The boundary conditions are implemented as natural 

boundary conditions, with the property that the ideal boundary conditions are 
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retrieved from the resistive ones by putting the resistivity to zero. The vacuum 

equations are solved independently from the eigenvalue problem of the plasma. 

The Laplace equation for the scalar potential of the magnetic field perturbation 

in the vacuum is solved using a cubic finite element/Fourier representation. 

In the chapters 5 and 6, results are presented on the numerical study of the 

stability of resistive free boundary modes. The stability of these mode has not yet 

been investigated in a fully toroidal geometry, without any ordering in pressure, 

aspect ratio, or resistivity. In chapter 5, the influence of the pressure is investigated 

and a comparison is made with the stability of fixed boundary resistive modes. It 

is shown that the stabilizing effect of the pressure due to the plasma compression 

of the fixed boundary modes is lost for the free boundary modes localized near 

the boundary. Since the stabilization due to the favorable average curvature in 

combination with a pressure gradient is small, the influence of the pressure on the 

stability is much less important for the free boundary modes than for the fixed 

boundary modes. 

In the second part of chapter 5, we have studied the effect of an X-point 

plasma shape as compared to a circular plasma boundary. The stabilizing effect 

of the X-point, known for ideal free boundary modes, was found even stronger for 

the resistive modes if the rational q surface lies outside the plasma. The stabilizing 

effect of the X-point is less efficient if the rational surface lies inside the plasma. 

In recent years, diagnostics have become available for the measurement of 

the equilibrium profiles of, for example, the pressure and the safety factor. This 

allows for the reconstruction of the plasma equilibrium with a reasonable degree of 

accuracy. This in turn allows for the calculation of the MHD stability properties 

of the plasma and a comparison between the calculated and the observed MHD 

instabilities. 

The edge localized modes as observed during the H-mode are one example of 

an observed instability where the free boundary resistive mode can be important. 

In chapter 6, we have analyzed the stability of the n = 1 resistive free boundary 

mode of a reconstructed equilibrium of an H-mode discharge in the JET tokamak. 

It is shown that for the resistive free boundary mode to become significantly un

stable, the current density gradient at the edge must be a factor of two larger as 

compared to the reconstructed equilibrium. Local details of the resistivity and 

of the current density profile are extremely important for the stability of these 

modes. The influence of the edge pressure gradient on the stability of the n = 1 

free boundary resistive mode is small, but it may drive bootstrap currents at the 
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plasma edge causing a local increase of the current density gradient. Knowledge 

on the current distribution has become available at JET, however, not in sufficient 

detail at present to prove or disprove the presence of local current gradients large 

enough to drive external resistive modes. Consequently, rather than confirming 

experimental results, the calculations presented are necessarily of a predictive na

ture, deriving conditions under which external resistive modes can be expected in 

tokamaks. 

In chapter 7, the MHD spectrum of circular cross-section tokamak plamas 

with small aspect ratio is studied for low mode numbers. Particular attention is 

given to the continuous part of the ideal MHD spectrum of such plasmas. Poloidal 

mode coupling in finite aspect ratio tokamaks yields gaps in the Alfven continuum. 

Global Alfven modes are found with a frequency inside these gaps. By interaction 

with the continuum branches the global Alfven modes experience damping via 

phase-mixing. This damping is computed in, resistive MHD. It is shown that for 

asymptotically small resistivity the damping is finite and independent of IJ· 
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APPENDICES 

Appendix A : Technical details on the CASTOR code 

A.1 Structure of CASTOR 

Whereas the physics background of CASTOR has been extensively described 

· in the main text, it is usely helpful for users to get some introduction in the 

organization of the code as a whole. Since CASTOR has gone through a long 

series of a gradual transformations over the past two years, and is still in the 

process of rapid change, the best we can do here is to point to the code itself and, 

in particular, to its internal documentation. On the next three pages we show a 

part of the listing of CASTORS (dating from July 4, 1991) which has been made 

by means of the REVISE program NEW (described in Appendix Dl). The listing 

shows both line numers (to the left) and REVISE identification numbers (to the 

right), whereas an index to all the COMMON blocks and subroutines is appended 

at the end (not shown here). 

Throughout the code the subroutines are equiped with a comment box de

scribing the function of that particular subroutine. Here, we have only printed the 

comment box of the main program since it provides the necessary information on 

the NAMELIST input parameters (CASTOR.19-102), a short description of the 

modular structure of the code (CASTOR.122-135), needed external library rou

tines (CASTOR.137-145), and memory requirements associated with the number 

of radial grid points and poloidal harmonics chosen (CASTOR.150-184). 

The SOURCE of the code is in a precompile format, with the COMMON 

blocks appearing at the beginning (starting with the line COMVER.1, and sup

pressed for most of the rest in the listing shown), which requires the precompiler 

PRE of REVISE to produce a FORTRAN file that can be compiled. 

The code consists of four parts (modules) which separate the different main 

functions, viz. specification of the equilibrium (module EQUIL), computing the 

matrices A and B (module MAT), solving the eigenvalue problem (modules SOLV), 

and diagnosing the solution by printing and plotting (module DIAG). One of the 
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merits of the vacuum solution of the perturbations is that it may be completely 

separated from the rest of the computation, resulting in an additional module 

VACUUM. The usual routine of computing eigenvalues or spectra is to execute 

the code with a succession of calls to the different eigenvalue solvers: QR (SOLVl) 

to get a rough idea of the overall structure of the spectrum, inverse vector iteration 

with the matrices kept in core (SOLV2), out of core (SOLV3), or efficiently stored 

in core (SOLV4) to accurately hunt out single eigenvalues, and using the Lanczos 

algorithm (SOLV5) to compute parts of the spectrum in one run. 

106 Structure of CASTOR 



----- SOURCJ: LISTING (*COMDECIUI) ---- 5/ 7/91 - 13. 3.t4 ----- CASTORS, P. 1 -------------

= *COMD&CltS = 

1 *COMDBC!t COllWR 
2 CllARACTER VERSION*(*), DD*(*) 
3 PARAMETER (VERSION = '8', DD • '4 JtJLY 1991') 
4 *COMDBC!t COMMAX 
5 PARAMETBR (LAllZ=5, MAllZ=5, llDIF>ol, LllAX=20) 
6 PARAMETER (NGKAX=251, MXll~-1) 
7 PARAMETER (llDBQ=t *MXllillT) 

............................... •tc. etc . ............................. . 

1 
2 
3 
1 
2 
3 
4 

SOURCJ: LISTING (*DECKS) ------- 5/ 7/91 - 13. 3.t4 -----CASTORS, P. 9 -------------

= *D&CKS = 

t03 *DECJ.t CASTOR CASTOR 1 
tOt PROGRAM CASTOR CASTOR 2 
t05 C CASTOR 3 
406 ************************************************************************ CASTOR 4 
407 ************************************************************************ CASTOR 5 
408 ** ** CASTOR 6 
409 ** M A S T E R F I L E CASTOR ** CASTOR 1 

410 ** ------------------------------ ** CASTOR 8 
411 ** ** CASTOR 9 
412 ** COMPLEX ALrVEN SPECTRUM FOR TOROIDAL PLASMAS ** CASTOR 10 
413 ** ** CASTOR 11 
41.fi ** ** CASTOR 12 
415 ** VERSION ** CASTOR 13 
416 *CALL COMVBR CASTOR 14 
417 ** ** CASTOR 15 
418 ************************************************************************ CASTOR 16 
419 ************************************************************************ CASTOR 17 
420 ** ** CASTOR 18 
421 ** INPUT : ** CASTOR 19 
422 ** ** CASTOR 20 
t23 ** ** CASTOR 21 
42C ** EQUILIBRIUM : READ FROM DISJ.t (OllIT llllAP) ** CASTOR 22 
425 ** ** CASTOR 23 
426 ** HAMZLIST NEWRUN : ** CASTOR 24 
421 ** ** CASTOR 25 
C2S ** MODE - CONTROL PARAMETER; ** CASTOR 26 
42g ** VALUES: ** CASTOR 27 
430 ** 0 - TEIUIIllATIOll OF EXBCllTIOll ** CASTOR 2S 
431 ** 1 QR ALGORITHM ** CASTOR 29 
432 ** 2 VllCTOR ITERATIOB, DI-CORE (STEtlERllAID) ** CASTOR 30 
433 ** 3 VllCTOR ITERATION, Otrr-OF-CORB (SCHWARZ) ** CASTOR 31 
434 ** 4 VECTOR ITERATION, IC VERSION OF OOC SOLVER ** CASTOR 32 
435 ** 5 LAllCZOS ALGORITHM ** CASTOR 33 
C36 ** 11 TESTCASE SOLOVIEV (ASPECT=3,ELLIPT=2), SOLVER 1 ** CASTOR 34 
431 ** 12 TESTCASE SOLOVEV (ASPECT=3,ELLIPT=2), SOLVER 2 **CASTOR 35 
C3S ** 13 TBSTCASE SOLOVr.V (ASPECT=3,ELLIPT=2), SOLVER 3 **CASTOR 36 
.c3g ** 14 TBSTCAS!. SOLOVEV (ASPZCT=3, ELLIPT=2), SOLVER 4 ** CASTOR 31 
440 ** ** CASTOR 38 
441 •• EQllAME - NAME or TllJ: EQUILIBRIUM •• CASTOR 3 g 
442 ** NLTORE - TOROIDAL EQUILIBRIUM (. T. OR • F. ) ** CASTOR 40 
Ct3 •• NG - lltlMBBR or GRID POINTS •• CASTOR 41 
444 ** RFOtlR(l) - LOllJ:ST POLOIDAL MODI! lltlMBBR ** CASTOR 42 
445 ** NTOR - TOROIDAL MODE lltlMBBR ** CASTOR 43 
446 ** ETA - RESISTIVITY ** CASTOR 44 
447 ** ASPECT - ASPECT RATIO (OllLY IF NLTORE=.F.) ** CASTOR 45 
44S ** QOZYL - Q ON AXIS ** CASTOR 46 
44g ** SIGl - SIGMA OF rIRST MESBACC. POINT ** CASTOR 47 
CSO ** SIQ2 - SIGMA OF SECOND MESJIACC. POilllT ** CASTOR CS 
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SOllRCK LISTING (*DECKS) ------- 5/ 7/91 - 13. 3.44 ----- CASTORS, P. 10 -------------

451 ** XR1 - POSITIOH OF FIRST llJ:SllACC. POINT ** CASTOR 49 
452 ** lCR2 - POSITION OF SECOllD llJ:SllACC. POINT ** CASTOR 50 
453 ** RllALL - POSITIOH OF TllE llALL ** CASTOR 51 
454 ** llVPSI - 111111BER OF RADIAL POillTS IN VACtJUll llJ:TRIC ** CASTOR 52 
455 ** HGV - ll11llBER OF RADIAL POillTS IN VA£. POTENTIAL SOL. ** CASTOR 53 
456 ** SIGV - SIGMA or llJ:SllACC. IN VACtJUll (XR = 0.) ** CASTOR 54 
457 ** DS11RF - PARAllJ:HR FOR DDISITY PROFILll: : ** CASTOR 55 
458 ** IDPOll - PARAllJ:HR FOR DDISITY PROFILll: ** CASTOR 56 
459 ** RHO= ( l - (1 - DSORJ') * S**2 )**IDPOW **CASTOR 57 
460 ** HOIAGFlt - PRINT SllITCB FOR FOORIER COllPOllENTS or THE METRIC ** CASTOR 58 
461 ** ** CASTOR 59 
462 ** VSBIFT(I)- I-TB ESTIHATE or EIGDVALUE FOR VECTOR ITERATIOH **CASTOR 60 
463 ** (I.LE.100); IF AllTOllHIC : **CASTOR 61 
464 ** lfRS - NtJMBER 01' AOTOla.TIC RDL SHIFTS ** CASTOR 62 
465 ** BIS - NUMBER or AO'TOlll.TIC DaGDIARY SBil'TS ** CASTOR 63 
466 ** DRS - WIDTH 01' AOTOIClTIC i\&AL SHIFTS ** CASTOR 64 
467 ** DIS - llIDTB OF AOTOllll.TIC IllAGIBARY SHIFTS ** CASTOR 65 
468 ** ** CASTOR 66 
469 ** us - RELATIVE ACCllRACY or EIGZIM\LtJE (VECTOR ITERATIOH) ** CASTOR 67 
470 ** BPLOT - PLOT SllITCB FOR SOLVERS 1 - 4, ** CASTOR 68 
4 71 ** ll11llBER or PLOTS FOR QR-SOLVER ** CASTOR 69 
472 ** XllIBQR(I) - LOWER LIMIT X-AXIS FOR I-TB QR-PLOT ** CASTOR 70 
473 ** XllAXQR(I)- OPPER LIMIT X-AXIS FOR I-TB QR-PLOT **CASTOR 71 
474 ** YllIHQR(I)- LOllER LIMIT Y-AXIS FOR I-TB QR-PLOT **CASTOR 72 
475 ** YllAXQR(I)- OPPER LIMIT Y-AXIS FOR I-TB QR-PLOT ** CASTOR 73 
476 ** ** CASTOR 74 
477 ** HAMILIST NEWLAN : ** CASTOR 75 
478 ** ** CASTOR 76 
479 ** !START - IF 0 START llITB SHIFT (EllSBIFT) AND COMPOTATIOH ** CASTOR 77 
480 ** OF TllE T-llATRIX ** CASTOR 78 
481 ** ELSE READ T-MATRIX l'ROll DISJC ** CASTOR 79 
482 ** ISTOP - IF < 0 : llRIH T-llATRIX Oii OISE + COMPOTATIOH ** CASTOR 80 
483 ** ELSE : llRIH T-llATRIX Oii OISE AND STOP ** CASTOR 81 
484 ** EllAX - DillEHSIOH OF TllE T-llATRIX ** CASTOR 82 
485 ** llXLOOP - llAXIllOll ll11llBER OF SHIFTS ** CASTOR 83 
486 ** ISBIFT - IF 1 : llAEE SHIFTS FOR &WSBIFT AND OllS(l:HOS) ** CASTOR 84 
487 ** ELSE : llAEE SHIFTS FOR &WSBIFT AND RICGIOH DETERIBED ** CASTOR 85 
488 ** BY XLIML,XLillR, YLIMB, YLIMT ** CASTOR 86 
489 ** l'OR ISBIFT,&Q.1 : ** CASTOR 87 
490 ** HOS - lltlllBICR OF GIVER SHIFTS IN ADDITIOH TO EllSBIFT ** CASTOR 88 
491 ** OllS - VECTOR FOR EIGICHVALUE SHIFTS ** CASTOR 89 
492 ** l'OR ISBIFT.NE.1 ** CASTOR 90 
493 ** XLillL - llIHillOll REAL PART or IBVESTIGATED RICGIOH ** CASTOR 91 
4 94 ** XLillR - llAXIllOll REAL PART or INVESTIGATED RICGIOH ** CASTOR 92 
495 ** YLIMB - MIBillOll IllAGIHARY PART or IBVESTIGATED RICGIOH ** CASTOR 93 
496 ** YLIMT - llAXIllOll IllAGIHARY PART or INVESTIGATED REGION ** CASTOR 94 
497 ** IBOLE - .TRUE. : TDRE IS A REGION XBOLEL,XBOLER,YBOLEB, **CASTOR 95 
498 ** YHOLJ:T, PART OF THE REGION XLIML,XLIMR, ** CASTOR 96 
499 ** YLIMB,YLDIT, WITHIR WHICH HO EIGENVALUES **CASTOR 97 
500 ** ARE TO BE SEARCHED FOR ** CASTOR 98 
501 ** XBOLEL - MIHIMtJM REAL PAR'l' ** CASTOR 99 
502 ** XBOLER - llAXIllOll REAL PART ** CASTOR 100 
503 ** YBOLEB - MIBillOM IMAGIHARY PART ** CASTOR 101 
504 ** YBOLET - llAXIMOM IMAGINARY PART ** CASTOR 102 
505 ** ** CASTOR 103 
506 ** OUTPUT : ** CASTOR 104 
507 ** ** CASTOR 105 
508 ** ** CASTOR 106 
509 ** WRITTEN ON UNIT 6 ** CASTOR 107 
510 ** ON llNIT 8 (AT IPP) ** CASTOR 108 
511 ** ON llNIT 11 (TEXT FOR FIRST PLOT) ** CASTOR 109 
512 ** AND FOR SOLVER 3 : ** CASTOR 110 
513 ** OH llNIT Hiil (DEFINED IR PRESET = 13) ** CASTOR 111 
514 ** ON ONIT H02 (DEFINED IR PRESET = 14) ** CASTOR 112 
515 ** OH llNIT Hiil (DEFINED IN PRESET = 15) ** CASTOR 113 
516 ** ON ONIT H04 (DEFIBED IR PRESET = 16) ** CASTOR 114 
517 ** ON ONIT HOS (DEFINED IN PRESET = 17) ** CASTOR 115 
518 ** ON ONIT HD6 (DEFINED IN PRESET = 18) ** CASTOR 116 
519 ** OH llNIT H07 (DEFINED IN PRESET= 19) ** CASTOR 117 
520 ** ** CASTOR 118 
521 ************************************************************************ CASTOR 119 
522 ************************************************************************ CASTOR 120 
523 ** ** CASTOR 121 
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SOURCJ: LISTING (*D&CKS) ------- 5/ 7/91 - 13. 3.44 ----- CASTORS, P. 11 -------------

524 ** 
525 ** 
526 ** 
527 ** 
528 ** 
529 ** 
530 ** 
531 ** 
532 ** 
533 ** 
534 ** 
535 ** 
536 ** 
537 ** 
538 ** 
539 ** 
540 ** 
541 ** 
St2 ** 
543 •• 
544 ** 
545 •• 

llODOLAR STRUCTURE 

CASTOR - PRJ:SET 
TESTS 
EQUIL 

(MODULE SPECirYlllG TllE ZQUILIBRitJM) 
VACtJtJM 

(MODULE COMPUTING VACtJtJM PERTURBATION) 
MATl-5 

(MODtJLJ: COMPUTING TllE MATRICES A AND B) 
SOLVl-5 

(MODULES FOR TllE DirnRZRT EIGENVALUE SOLVERS) 
DIAGl-5 

(MODULE FOR TllE DIAGllOSTICS) 

UTZRllAL SIJBROUTINZS : 

PPP LIB 
BLAS 

LINPAClt 
ZISPAClt 
CRAY 
BGOLIB 

B&GPLT, LBLTOP, I.PLOT, DLCB, Nl"RAME, l'INPLT 
C(Z)COPY, C(Z)DOic, C(Z)SCAL, C(Z)AXPY, IC(Z)AMAX 
C(Z)DOTtJ, S(D)SCAL, S(D)COPY, C(Z)S(D)SCAL 
CPOCO, CPOSL, S(D)GTSL 
CUL, CORTB, COMQR 
RARS&T, RCJ'J'T2, ORDERS 
RFT2 (NOT AT IPP) 

** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 

************************************************************************ CASTOR 

546 ** 
547 ** 
548 ** 
SU 
550 
551 ** 
552 ** 
553 ** 
554 ** 
555 ** 
556 ** 
557 ** 
558 ** 
559 ** 
560 ** 
561 ** 
562 ** 
563 ** 
564 ** 
565 ** 
566 ** 
567 ** 
568 ** 
569 ** 
570 •• 

************************************************************************ CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 
** CASTOR 

571 ** 
572 ** 
573 ** 
574 ** 
575 ** 
576 •• 
577 ,.... 
578 •• 
579 ** 
580 ** 
581 ** 
582 •• 
583 ** 
set •• 
585 ** 
586 ** 
587 ** 

MAXIlltJM NUllBZR OF GRID POINTS AND FOtJRIER COEFFICIENTS 

1) QR 
= 

2) IV (IC) 

3) IV (OOC) 

4) IV ( IC-OOC) 

5) LANCZOS 

1 800 000 

llDIORY (64-BIT WORDS) 

3 600 000 64 000 000 

NG=12, MANZ=3 
NG=7, MANZ=S 

HG=4 g, llAHZ=J 
NG=l 7 , llARZ=S 

BG=18, MANZ=J 
RG=ll, MANZ=S 

HG=113,MAHZ=3 
NG=4 0, MANZ=S 
BG=20, MAHZ=7 

NG=83, 
NG=49, 
NG=35, 

MANZ= 3 
MANZ= 5 
MANZ= 7 

NG=2279,MANZ= 3 
NG=822, MANZ= 5 
NG=420, MANZ= 7 
NG=254, MANZ= g 
HG=169, MANZ=ll 
NG=121, MANZ=13 

MANZ=7 MANZ=ll MANZ=21 
NO LIMIT ON NG (FOR PLOTS : NG < NGMAX) 

NG=95, MANZ=3 
NG=32 , MANZ=S 

NG=32 , MANZ=3 
NG=ll, MARZ=S 

llG=221,MANZ=J 
NG=78, MANZ=5 
NG=39, MANZ=7 

NG=74, 
NG=26, 
NG=13, 

MANZ=J 
MANZ=5 
MANZ=7 

NG=USS,MANZ= 3 
NG=l622,MANZ= 5 
NG=8Jl, MANZ= 7 
HG=503, MARZ= g 
NG=336, MANZ=ll 
NG=240, MANZ=13 
NG=180, MANZ=15 

NG=l 4 91 I MANZ= 3 
NG=542, MANZ= 5 
NG=277, MANZ= 7 
NG=168, MANZ= g 
NG=112, MANZ=ll 
NG=80, MANZ=13 

588 ************************************************************************ CASTOR 
CASTOR 
CASTOR 
CASTOR 

589 
590 
591 

************************************************************************ 
c 
*CALL COMMAX 

............................... etc. etc . ............................. . 
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122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
lH 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 



A.2 Explicit expressions of the matrix elements 

The final form of the matrix elements of the A and B matrices is given below. 

The indices are the same as in the sub block of the Z MA matrix in Fig. A. l. The 

second index labels the variable in the state vector, fJ = (p1,ili,ii2,iia,T1,A1,A2, 

Aa ), the first index labels the number of the equations (in the same order as the 

state vector). The expressions do not explicitly show the dependence on the radial 

interval, the Fourier harmonics and the index of the two interpolating functions 

(the index p). The equilibrium terms should be read as the (m - m) 1h harmonic, 

where m and m determine the position in the (k, k) sub-block. The lower and 

upper case h stand for the two quadratic and cubic finite elements respectively. 
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With these shorthand notations in mind, the B and A matrices are given by: 

B(l, 1) = 

FR2 

B(2,2) = HHpofq 911 

FR2 

B(2,3) = -Hhpofqi912 

FR2 

B(2,4) = -Hhpofqi912 

B(3,2) = 
FR2 

hHpofqi912 

B(3,3) = 
FR2 

hhpofq 922 

B(3,4)= 
FR2 

hhpofq 922 

B(4,2) = 
FR2 

hHpofqi912 

B(4,3) = 
FR2 

hhpofq 922 

B(4,4)= 
FR2 2 2 

hhpo fq (922 + q R ) 

B(5,5) = 
1 fqR2 

hh--1po~ 1- s 

F 
B(6, 6) = hh fq 922 

B(6, 7) = -hH ~ i912 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

Explicit expressions of the matrix elements 



B(7,6) = F. 
Hh fq 1912 

B(7, 7) = F 
HH fq 9u 

B(8,8) = HHfq 
F 

A(l, 2) = hH' -poR2 - hH ~(R2 opo +Po oR2) 
s s os · os 

A(l, 3) = -hh m poR
2 

s 
P R2 

A(l,4) = -hh(m + nq)-0-
s 

A(2, 1) = H'h R2To + Hh To oR2 
s s OS 

A(2,5) = H'h R2po +Hh Po oR2 
s s OS 

( ) 
I F

2 
( - 2) A 2,6 = H h fq 2R2 n922 - mqR 

nF
2 

(. _ 2 o ( 922 ) ) + Hh fq 2R2 1912(2m - m + nq)- R os R2 

F 2 . p2 

A(2 7) = H' H' - H' H -m912 
' fq + Jq2R2 

nF
2 

( . q d F ) 
+HH fq2R 2 9u(m+nq)-1912Fds(q) 

A(2 8) = H' H' -922F2 + H' H im912F2 
' fq2 R2 f q2 R2 

I -F
2 

(· ( _ ) 2 0 (922 )) +HH fq 2R 2 1912 2m-m+nq -R 08 R2 

-mF
2 

( . q d F ) 
+HH fq 2R2 9u(m+nq)-1912Fds(q) 

R2T. 
A(3, 1) = hh--0 m 

s 

A(3,5) = hh R
2

p0 m 
s 

-F2 
2 2 

A(3, 6) = hh fqR2 (mmR + n 922) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 
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A(5,2) = hH' -R2p0To + hH -po (To aR2 + _!f_ aTo) 
s s as / - 1 as 

A(5,3) = hh -R
2

poTo m 
s 

-R2poTo 
A(5,4)=hh (m+nq) 

s 

A(6, 2) = hH ig12F2 
fq 

A(6, 3) = hh 922F
2 

f q 

A(6, 6) = hh fqri; (g22 n
2 + m2 R2

) 

( ) 
I 77F - 77F . 2 

A 6, 7 = hH fq m + hH f qR2 ig12n 

( ) 
I 77F -77F . -

A 6, 8 = hH fqR2 g22n + hH fqR2 imng12 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

Explicit expressions of the matrix elements 



A(7,2) = HH - 9uF
2 

fq 

A(7, 3) = Hh i912F2 
f q 

( ) 
I riF F ( . 2 ari R2) 

A 7,6 = H h fq m + Hh fqR2 -irin 912 + as m 

I I -riF -riF 2 I -F ari 
A(7, 7) = H H fq + HH fqR2 n 911 + HH fq as 

I riF . riF -
A(7,8) = HH f R 2 m912 + HH f R 2 911nm 

q q 

A(8,2) = HH f 
1 riF nF (' OTJ) 

A(8, 6) = H H fqR2 n922 + Hh fqR2 1rim912 + 922 as 

, -riF nF ( . ari) 
A(8, 7) = H H f qR2 in912 + H H f qR2 rim911 - 1912 as 

I I -riF I -F (' ari) 
A(8, 8) = H H f qR2 922 + H H f qR2 1rim912 + 922 as 

, riF -mF ( . ari) + H H fqR2 im912 + H H fqR2 rim911 - 1912 as 

(A.15) 

(A.16) 
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A MATRIX 

0 

ZMA 

; 
'1->l+t' 

; + 1 

0 

ZMAMATRIX 

~ ~ ~ L£] 
I f •I f i + I I i + I f ;+ I 

I I I 2 I 3 I 8 

o I ? ' 

L£J ~ 
3 I 

I I• I f i + I 

I 7 -

• I . ' 
Fig. A.1 The structure of the A (B) matrix. The ZMA matrix contains the 

contribution to the weak form of one radial interval. The functions drawn in the 

ZMA matrix represent the two finite elements for each node. 
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Appendix B : Numerical testcases CASTOR vacuum 

Before we can apply the CASTOR code with the added vacuum module to 

actual ideal and resistive free boundary problems, the code has to be tested in 

order to gain confidence in the results. In this paragraph we will give the results 

of some test cases for both the ideal and the resistive free boundary modes. Some 

attention is given to the accuracy with which the boundary conditions are satisfied 

and to the influence on the growth rate. 

B.1 The vacuum solution 

For a test of the vacuum equations, independent of the plasma solution, we 

can, for example, use the analytic solution of the Laplace equation for an elliptical 

plasma boundary with an infinite aspect ratio. For a flat current density in the 

plasma, the angular coordinate of the straight field line coordinates (as defined 

in chapter 2) at the plasma boundary is identical with the angular coordinate 

of the separable orthogonal elliptic coordinates. The two coordinate systems are 

respectively given by: 

x=flcosB, 

y = Efl sinB, 

x = (E2 -1) 1
/ 2 sinhµ cosB, 

y = (E2 -1)112 coshµ sinB, 
(B.1) 

where E is the ellipticity of the plasma boundary which is given by 1/; = 1 or 

µ = µ 0 = tanh- 1(1/ E). The general vacuum solution, for a toroidal mode number 

n and the wall at infinity, is given by: 

cl>= L <I>m(µo)e-lml(µ-µo)eimD+in.P. (B.2) 
m 

The driving term Jb1 at the plasma boundary is identical for the two coordinate 

systems. Thus, setting (Jb1 )m = (bi)m = o<I>/8µ = .Sm,mp.,., we obtain a very 

simple vacuum response matrix: 

(ba)m = ~(-in°~j)(Jb1 )m· 
m 

(B.3) 

Note that, although in the analytic solution in the elliptic coordinates the Fourier 

harmonics are independent, this is not true in the coordinate system ( 4.35) used 
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in the numerical solution. In the vacuum the solution will consist of many cou

pled harmonics which must all go to zero at the boundary except for the driving 

harmonic. This makes the test of the vacuum solution non-trivial. 

The equilibrium used for the test has an ellipticity of 2 and an aspect ratio 

of 104
• In Fig B.1, them= 2 and 4 response, cJ>m at the plasma boundary on an 

m = 2 perturbation are plotted as a function of the number of equidistant radial 

grid points in the vacuum. The number of Fourier harmonics is 15. The shape 

of the wall is a confocal ellipse with µ = 3. The numerically calculated response 

converges to the analytic values within the errors caused by the finite aspect ratio 

and the wall distance. Included in the figure are the values calculated using a non 

equidistant grid. The radial points are placed using a Gaussian distribution with a 

half width of u = 0.1 with the maximum of the Gaussian at the plasma boundary. 

This greatly improves the convergence: the accuracy with 11 radial points is now 

of the same order as that with 51 equidistant points. The reason is the behavior of 

the vacuum solution near the plasma boundary. The vacuum solutions of m = 2 

and m = 4 are shown in Fig. B.2, where the number of radial points, N, is 21 and 

u = 0.1. The computational cost of the calculation of the vacuum response matrix 

is negligible compared to the actual eigenvalue calculation. The CPU time on an 

IBM 3090 is about 6 x 10-4 N M2, i.e about 10 s for a typical case. 

8.2 Ideal free boundary modes 

The standard test case for ideal free boundary modes in toroidal geometry 

is the instabilities of the so-called Soloviev equilibrium. The growth rates of !ow

n ( n = 1, 2) instabilities for a number of different situations as obtained by ideal 

MHD stability codes (PEST, ERATO, NOVA) have been published [Cheng90] and 

can be used for comparison. 

The Soloviev equilibrium (see Eq. 3.18) used here is characterized by fo = 

1/3, E = 2 and q0 = 1.2 is used here. The growth rate of the n = 1 instability 

is plotted in Fig B.3 versus the number of Fourier harmonics in the plasma. The 

number of radial grid points in the plasma is 21. Convergence up to the third 

decimal place is already obtained with 6 radial points. The vacuum response 

matrix is calculated with 31 harmonics and 51 radial grid points with O' = 0.1. 

Extrapolation to M -> oo yields a growth rate of >. = 0.415 or w2 = >.2qf = 

0. 75. This value is to be compared with 0. 75, 0. 7 48, and 0. 78 calculated with, 

respectively, the PEST-1, NOVA, and the ERATO code. 
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m=2 

2 10-3 

C\I 0.499 
II 

E 

1 1 o-3 

0.498 O"= 0.1 
m=4 

0.0 

0 10 20 30 40 50 
n 

Fig. B.1 The amplitude of m = 2 and m = 4 Fourier harmonics of the vacuum 

solution, cJ.>m, at the plasma boundary as a function of the number of finite elements 

used in the vacuum solution. The curves marked by u = 0.1 are calculated with 

the mesh accumulated near the plasma boundary. 

0.6 0.06 

0.5 0.05 

0.4 0.04 

C\I 

3 
II 
~ 

II 0.3 0.03 3 
E fl 

~ 

0.2 0.02 

0.1 0.01 

0.0 0.00 
o.o 0.2 0.4 0.6 0.8 1.0 

s 

Fig. B.2 Them = 2 and m = 4 harmonics of the vacuum solution, cJ.>m, as a 

function of the radial coordinate in the vacuum. 
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0.43 

0.41 

0.39 

0.37 

0.35 

Fig. B.3 The growth rate of the n = 1 instability of the Soloviev equilibrium 

(E = 2, eo = 1/3, qo = 0.6) as a function of the number of Fourier harmonics in 

the plasma. 

8.3 Resistive free boundary modes 

Since no results of calculations of the growth rates of resistive free boundary 

modes in a general toroidal geometry have been published, we cannot fully test the 

resistive modes. Of course, results are known for cylindrical geometry and excellent 

agreement is found in the limit of infinite aspect ratio with the cylindrical resistive 

MHD code LEDA [Poedts89]. 

For testing the convergence of the error in the resistive boundary conditions, 

we calculate the eigenfunctions of an n = 1 free boundary resistive mode. The 

equilibrium is characterized by an ellipticity of 1.5, an inverse aspect ratio of 4 

and a poloidal beta of 0.37. The two equilibrium profiles normalized to one on the 

magnetic axis, are given by II( ,P) = r( ,P) = 1 - ,P. The q-profile is chosen such 

that the q = 3 surface is just inside the plasma (qedge = 3.003). 

In Fig. B.4 we have plotted the relative jump in the toroidal component of 

the m = 3 magnetic field perturbation at the plasma boundary as a function of the 

number of equidistant finite elements in the plasma for two values of the resistivity. 

It shows that the jump converges to zero with the third power of the radial grid 
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100 1 OO 

10·1 10·1 
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10·2 10·2 
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Fig. B.4 The relative jump in the toroidal magnetic field perturbation from 

the plasma to the vacuum as a function of the number of radial finite elements 

in the plasma for two values of the resistivity. Also shown (on the right) is the 

relative error in the growth rate as a function of the number of finite elements in 

the plasma (11 = 10-7 ). 

[B.b] I B.b 

[B.b] 

5 10 
M 

Fig. B.5 The relative jump in the component of the magnetic field perturbation 

tangential to the equilibrium magnetic field as a function of the number of Fourier 

harmonics used in the plasma. 
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size. At smaller resistivities, the boundary layer at the plasma boundary gets 

smaller and more radial points are needed for an accurate representation of the 

· tayer. Using a non-equidistant mesh with the finite elements packed in the resistive 

layer greatly improves the accuracy of the boundary conditions. This is illustrated 

in Fig. B.4 for a mesh with a Gaussian distribution of the elements with a half 

width of a = 0.1 centered at the boundary. Also drawn is the convergence of the 

relative error in the growth rate with an increasing number of equidistant elements. 

It shows that, as is to be expected, the growth rate converges much faster than 

the boundary conditions. The eigenfunctions of the velocity perturbations at a 

resistivity of 10-5 are shown in Fig. B.6. The boundary layer is most clearly seen 

in the v2 component. Them = 3 harmonic peaks near the plasma edge but returns 

to zero in the resistive boundary layer. 

The second resistive boundary condition, i.e. continuity of B 0 ·b, shows a 

quite different behavior. The relative error in Bo·b appears to be independent of 

the number of radial grid points or the resistivity. The jump does converge to zero 

with an increasing number of Fourier harmonics. Fig. B.5 shows the relative error 

in Bo·b and in the eigenvalue as a function of the number of Fourier harmonics 

for a resistivity of 17 = 10-1
. 

The different behavior of the boundary conditions on the two tangential 

magnetic field perturbations results from the different origins of the two conditions. 

The continuity of Bo•b is essentially the same as the ideal MHD pressure balance 

condition and is therefore not affected by the resistive boundary layer. The jump 

in the other tangential component of the magnetic field perturbation in ideal MHD 

is connected with a surface current density in the perturbation. In resistive MHD, 

the surface current density is resolved in the resistive boundary layer at the edge. 

Thus, it is essential to accurately represent the boundary layer in order to satisfy 

the resistive boundary conditions. 
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Fig. B.6 The Fourier components of the three components of the velocity per

turbation as a function of the radial coordinate in the plasma. The labels refer to 

the m = 2 and m = 3 harmonics. Note the resistive boundary layer near s = 1 

where v2 and v3 must go to zero. 
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Appendix C : Continuous spectrum code CSCAS 

C.1 The Ideal MHD continuous spectrum 

When the equilibrium quantities vary only in one spatial direction and are 

constant on magnetic surfaces, the perturbed quantities can be Fourier analyzed in 

the two ignorable spatial coordinates and each Fourier component can be studied 

separately since there is no interaction between them. The continuous parts of the 

. spectrum can then be determined in an algebraic manner as they correspond to the 

singularities of the coefficients of a second-order ordinary differential equation (the 

Hain-Liist equation). The Alfven continuum, for instance, is given by the disper

sion relation w.( !/!) = k( t/J) ·Bo(!/!)/ v' µp0 ( t/J ), with k the wave vector. In equilibria 

with inhomogeneity in two spatial directions, however, the equilibrium quantities 

also vary on magnetic surfaces and this loss of symmetry makes the determination 

of the continuous spectrum considerably more complicated. The continuous spec

trum of static, axisyrnrnetric and toroidal plasmas has been derived independently 

by [Goedbloed75] and [Pao75]. These authors showed that in such a plasma the 

continuous spectrum is determined by a reduced (one-dimensional non-singular) 

eigenvalue problem for a fourth-order system of ordinary differential equations on 

each flux surface. The reduced equations are obtained upon limiting the analysis 

to the neighbourhood of a particular flux surface !/! = t/Jo and neglecting smaller 

terms. The coefficients of this reduced eigenvalue problem are all non-singular and, 

consequently, this eigenvalue problem yields a discrete set of eigenvalues on each 

flux surface. However, each eigenvalue of this discrete set spreads out a continu

ous spectrum when the magnetic surface is varied. It can be shown [Goedbloed75, 

Pao75] that a solution of the non-singular eigenvalue problem on !/! = t/!o corre

sponds to an improper solution of the original singular problem with the same 

eigenvalue and with v1.µ, a19 , and a1q, (and, hence, B1.µ) diverging logarithmically 

as !/! --+ t/!o, while the other components of the state vector diverge as ( !/! - t/!o )- 1
. 

The numerical method applied in CSCAS is essentially a convenient way 

to obtain the equations of the reduced eigenvalue problem that determines the 

continuous spectrum from the full set of ideal MHD equations by using the results 

of Pao and Goedbloed and avoiding any analytic manipulations of these equations. 
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C.2 Numerical method 

Clearly, the continuous spectrum can be determined by means of the normal

mode code CASTOR. However, this procedure is not efficient because of the ex

cessive memory requirements of the QR-algorithm. The general matrix eigen

value problem solved by CASTOR involves matrices with dimension ( d x d) with 

d = 16 x N.p x Nm, where N.p is the number of radial mesh points and Nm the 

number of poloidal fourier components. The problem now is that, in order to 

determine the continuous part of the spectrum, N .p has to be large because the 

singularities have to be resolved properly. Moreover, when strong mode coupling 

occurs, Nm has to be large too. The alternative inverse vector iteration does not 

. have such severe memory requirements but demands a lot of CPU and, hence, this 

method is not efficient either. 

Given a solver for the general ideal-MHD eigenvalue problem, such as CAS

TOR, the ideal continuous spectrum can easily be obtained by prescribing the 

radial dependence which is known to be singular and logarithmic in nature as 

discussed above. This is done by focussing on one magnetic flux surface and re

placing the cubic finite elements by log(€) and the quadratic elements by 1/E, 
with small €, e.g. 10-8 • This approximates the logarithmic singularity of the ra

dial velocity- and magnetic field components, and the (.P-.Po)- 1-type singularity 

of the other dependent variables and introduces an ordering of the terms in the 

general ideal MHD equations analoguous to the ordering introduced by Pao and 

Goedbloed to obtain a reduced eigenvalue problem on ,P = ,P0 • This method has 

been implemented in CASTOR which resulted in the program CSCAS (Continuous 

Spectrum from CAStor ). The resulting reduced eigenvalue problem is solved with 

the QR-algorithm for a finite number of .Po's. This reduced eigenvalue problem is 

determined by only 8 x Nm equations and, hence, the memory problems are solved. 

In addition, the method turns out to be very efficient too. For five Fourier har

monics and 100 flux surfaces, for instance, CSCAS requires only 12 CPU seconds 

to detemine the range and the internal structure of the continuous spectrum. 
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Appendix D : AUXILIARY PROGRAMS 

D.1 REVISE : a portable facility for structured program development 

In an international group of scientists collaborating on related subjects and 

using the same numerical codes an immediate need arises with respect to com

munication on the development of these codes: How to control and to exchange 
the progression of changes, avoiding the introduction of mistakes, informing fellow 

collaborators of yet another version of their daily working tool, while stimulating 

growth of these tools? REVISE is a package of portable FORTRAN codes devel

oped precisely for this purpose. Its use requires the source codes to be brought 

in a special precompile format so that changes can be detected, documented, and 

communicated easily. The five functions of creating a new source list, precompiling 

a FORTRAN program from the source, comparing a new source with a previous 

list, creating a modification set, and extracting a new source code from a REVISE 
list are cast in five auxiliary programs called NEW, PRE, COM, MOD, and EXT. 
These programs and their companion system procedures have been perfected and 

installed at the computers of IPP Garching, KUL Leuven, FOM Nieuwegein (i.e. 

SARA, Amsterdam), and JET. The agreement on this way of communication has 

turned out to be invaluable for the coherence of the numerical work of the collab

orating groups. 

REVISE is a portable facility for the systematic maintenance of large com
puter programs which combines the positive features of updating and screen edit

ing (rigor and speed), while avoiding the negative ones (slowness and generation 

of errors). The basic information of a changing program (deck names, numbered 

lines, index, etc.) is stored into a LIST file which serves as a starting point for 

comparison with later versions of the same program. 

REVISE consists of five programs: 

1 a) NEW FORTRAN A: 

b) PRE FORTRAN A: 

2 a) COM FORTRAN A : 

b) MOD FORTRAN A: 

c) EXT FORTRAN A: 

S -----> L 

S--> F 
(edit) 

L + S'-----> M 

L + M -----> LM , L' 

L(') -----> S(') 

(new list) 

(precompile) 

(compare) 

(modify) 

(extract) 

written in Fortran 77, where the abbreviations have the following meaning: 
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S =SOURCE, L =LIST, F =FORTRAN, 
S' = new SOURCE, LM = LISTM, 
M = MODIF, L' =new LISTR. 

A usual FORTRAN file is brought into the required REVISE format by inserting 
the following instructions : 

*COMDECK comdeck name 
(followed by a comdeck, usually a COMMON block) 

*DECK deck name 
(followed by a deck, usually a subroutine) 

*CALL comdeck name (instructing the precompiler to insert that comdeck) 

*IF sitel 
(followed by FORTRAN lines pertinent to sitel) 

*ELSEIF site2,site3 
(followed by FORTRAN lines pertinent to site2 and site3) 

*ENDIF (closing the particular branching part refering to the different sites). 

Modifications of the SOURCE thus obtained are then exchanged by means of 
M 0 D IF files consisting of the following instructions: 

*IDENT MOD_nr 

* / comment lines 
*D deckname.11,12 

(followed by new FORTRAN lines replacing the indicated ones) 
*I deckname.l 

(followed by new FORTRAN lines inserted after the indicated one). 

This mechanism allows users to keep track of the evolution of the code, while 

exchanging this information in a very condensed form. 

Departing from a SOURCE in REVISE format, such as CASTORS as partly 
listed in Appendix Al, a typical sequence of commands would be the following: 

1) User A creates a new LIST file from the SOURCE: 

"NEW CASTORS" 

(CASTORS.SOURCE--> CASTORS.LIST) 

2) He receives a modification file from user B (e.g. by E-mail) and wishes to 
make a list of the modifications as well of the revised source resulting from 

it: 

"MOD CASTORS MCASSA CASSA" 

(CASTORS.LIST+ MCASSA.MODIF-+ CASSA.LISTM, CASSA.LISTR) 
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3) Obviously, the revised source list on the LISTR file is only useful if user A 

can extract the new SOURCE from it: 

"EXT CASSA" 

(CASSA.LISTR ---> CASSA.SOURCE) 

4) Next, user A develops the code further by just using any editor (but properly 

updating the name of the file): 

(CASSA.SOURCE ---> CASSB.SOURCE) 

5) He then precompiles the appropriate FORTRAN file by means of PRE, which 
inserts the COMMON blocks and activates the FORTRAN lines pertinent 
to his particular site: 

"PRE CASSB" 

(CASSB.SOURCE ___, CASSB.FORTRAN) 

6) Obviously, the FORTRAN file is then compiled and executed, while the steps 

4 and 5 may be performed many times in between. 

7) Finally, user A decides that his version of the code is a genuine improve

ment which he wishes to communicate to user B. To that end he creates a 

modification file: 

"COM CASTORS CASSB" 

(CASTORS.LIST+ CASSB.SOURCE ---> MCASSB.MODIF) 

In this manner, it is possible for physicists to collaborate on the same program 

while permitting to make any changes that are required in the course of the inves

tigations. 

D.2 PPPLIB : Plasma Physics Plotting Library 

The portable package of FORTRAN plotting routines PPPLIB has been in

stalled at the sites of the collaborating groups mentioned under Dl. This has 

turned out to be another means of safeguarding the coherence of the numeri
cal programs since this avoids the need of constant rewriting diagnostic parts of 

the codes calling local plotting facilities. A modernised version of this package 

(PPP15) has been developed which may deliver CALCOMP as well as Postscript 

files to be directly processed by a laserprinter. A description of the old version 

of the code (PPPlO) is found in [GoedbloedS6]. Whereas the quality of the plots 

is substantially improved through use of Postscript, the calls to the new version 

are unchanged. For details the user should consult the source which is completely 

documented internally. 
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