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1 Introduction 

The aim of this 'Installation and user guide' for the program CASTOR is to provide 
practical information for the installation of the program and for using it to determine 
the ideal or resistive MHD spectrum, or part of it (e.g. instabilities or 'gap modes') 
of axisymmetric toroidal plasmas. For a more technical and detailed description of the 
applied numerical methods the reader is referred to the literature cited below. 

CASTOR is a Fortran 77 program that solves the linear, resistive MHD eigenvalue 
problem in a general toroidal geometry, where the equilibria are assumed to be axisym­
metric. The eigenfunctions are essentially two dimensional since their dependence on the 
toroidal angle can be described with one toroidal mode number (due to the axisymmetry 
of the equilibrium). 

CASTOR is used by many people and different versions of the program are available. 
The REVISE package (see Appendix A) is used too keep track of the different versions of 
the program. This installation and user guide applies to version 9e. 

1.1 Resistive MHD eigenvalue problem 

CASTOR considers the resistive MHD equations 1 linearized around a static axisymmet­
ric equilibrium. The required information about the equilibrium is passed to CASTOR 
through the 'equilibrium mapping file' produced by the equilibrium code HELENA [6]. 

In CASTOR, a coordinate system (s, (), r/;) is used. The coordinate s = # = )1/J/1/J1 
labels the magnetic flux surfaces (7/J is the poloidal flux [6]). The coordinate rjJ is the usual 
toroidal angle of the cylindrical (R, Z, r/;) coordinate system and the poloidal angle () is 
determined such that the field lines are straight in the (0, r/;) plane, i.e.: 

dr/; -
d(J = q(?jJ). (1) 

More information on the coordinate system, e.g. the metric coefficients, can be found in 
the PhD thesis of Guido Huysmans [1]. 
The equilibrium density p0 can be chosen arbitrarily since it does not appear in the 
Grad-Shafranov equation. In CASTOR, the following equilibrium density profiles can be 
chosen: 

Po 

Po 

Po 

Po(s) = [1 - (1 - D)s2
)]", 

Po(s) = (1 - D1s2)(1 + Ds2
), 

Po(s) = 1 + Ds2 + D1s4 + D2s6 + D3s8
, 

(2) 

(3) 

(4) 

where D, D1 , D 2 , D3, and v are input parameters. However, other density profiles can 
easily be implemented in the code. 

The linear resistive MHD equations are made dimensionless by normalizing the lengths 
to the major radius of the equilibrium (RM, the radius of the magnetic axis), the magnetic 
field to the equilibrium toroidal field at the position of the magnetic axis (B0 ), and the 
density to the equilibrium density at the magnetic axis (p0 ). [Notice that the distance and 
the magnetic field are normalized differently in HELENA and CASTOR. The distances 

1There also exists a version of CASTOR that includes thermal conduction and radiation \vhich is used 
to study the thermal MHD spectrum [11] 
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and the magnetic field are re-scaled in HELENA when the mapping file for CASTOR is 
produced.] The normalization of the other quantities follow from these, e.g. the velocity 
is normalized with the Alfven velocity at the magnetic axis, i.e. VAo = B0 / ,;µr;po. Hence, 
the following normalizations are used: 

I, p B 
-t -t p, 

RM Po Bo 
-t B, 

µoP 
P, 

v v, VAo 
-t -t t-

B;f VAo RM 
-t t, 

µoRM J J, 7] 
-t 

Bo µoRMVAo 
-t 'ij' 

E 

VAoBo 
-t E, 

~µopo 
-t T, 

B(f 

where k8 denotes the Boltzmann constant and m the mean particle mass. Below, only 
dimensionless quantities are considered and the notation is simplified by dropping the 
bars. 

Using the vector potential A: 
B = \7 x A, (5) 

instead of B itself, the resistive MHD eigenvalue problem can written in the following 
form (in dimensionless units): 

),p, 

),poV1 

),poT1 

>,A, 

-\7 · (pov1), (6) 

-\7(poT1 + p1T0 ) + (\7 x B 0 ) x (\7 x Ai) - B 0 x (\7 x \7 x Ai), (7) 

-pov1 · 'VTo - (1- l)po\7 · V1+271(1- l)(\7 x Bo)· (\7 x \7 x A,), (8) 

-B0 xv1 -ry\7x\7xA1, (9) 

with the time dependence of the linear perturbations taken to be ~ e'1
• The eigenvalue 

), can be complex. The Ohmic term in Eq. (8) has been neglected in CASTOR. 

1.2 Projections and discretization 

The above system of linear MHD equations can be written in the matrix form: 

LU=),RU, (10) 

where L and R are differential operators and U is the state vector defined by 

(11) 

In CASTOR, the Galerkin method is used and the test functions in the weak form 
are chosen to be equal to the discretization functions of the state vector U. The actual 
variables used in the numerical solution of the eigenvalue problem are defined as follows. 
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For the velocity, vi, the following representation is chosen, which is basically the ERATO 
represention [10]. 

(12) 

where J = \17/J/''ils. In terms of the contravariant components v' =vi· \ls, v0 =Vi· \10, 
and v¢ = Vi · \1 </; one gets simple combinations: 

- if B ¢) 
v2 = F (qv - v , (13) 

where F = RB¢. For the vector potential, on the other hand, a covariant representation 
is chosen: 

A= -iAi \1 s - A2 \1B + A3 \1</J. (14) 

In terms of the covariant components A,, A0 , and A¢ this yields 

(15) 

Finally, the perurbed density and temperature are multiplied with s: 

(16) 

so that the actual state vector used in the numerical solution reads: 

(17) 

The components of the state vector are discretized by means of a combination of cubic 
Hermite and quadratic finite elements for the radial (s-) direction and a truncated series of 
Fourier modes for the poloidal direction. Due to the considered axisymmetric equilibrium, 
the dependence on the toroidal angle can be described by a single Fourier mode. This 
yields 

Af2 /\r 

U- k ( (I ,1,. t) '\""' '\""' ( k hk ( ) k hk ( ) ) imO in¢ At s, ''-Pi = L L amjl JI s + amj2 j2 s e e e ' (18) 
m=AI1 j=l 

where k labels the eight components of 0, m labels the Fourier harmonics in the poloidal 
direction and j labels radial grid points. Not~ce that t_:vo finite elements, hJi ( s) and hJ2 ( s), 
are used in each radial gridpoint. For vi, A 2 , and A 3 cubic Hermite finite elements are 
used, while p, v2 , v3 , T, and Ai are approximated by quadratic finite elements [8]. 

With two finite elements per variable and per grid point, the total number of unknowns 
(a~1 , and a~n12 ) amounts to 2 x 8 x M x N"' with Jvl = Jvl2-Jvl1 +1 the number of poloidal 
Fourier harmonics and N, the number of radial gridpoints. In the Galerkin procedure the 
discretization (18) is used in the system (10) and the weak form of this system is obtained 
by multiplying it with each of the 2 x 8 x M x Nr finite elements and integrating over the 
plasma volume [8]. The application of the Galerkin procedure then yields an algebraic 
system of the form 

A·V=AB·V, (19) 

where A is a non-Hermitian matrix and B a positive-definite matrix. Both A and B are 
tridiagonal block matrices with sub-blocks of dimension 16iV/ x 16Jvl (see [1] where the 
matrix elements of A and B are given explicitely). 
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The resistive MHD system (10) is of order six in s and, hence, the solution is fully 
determined when six boundary conditions are specified. When the plasma is surrounded 
by a perfectly conducting wall at the plasma boundary (s = 1), the normal component 
of the velocity and the magnetic field and the tangential electric field must vanish at the 
wall. On the axis, regularity conditions need to be specified. In terms of the variables 
used in CASTOR one gets: 

il1(s=l)=O, (20) 

at the wall and 

v1(s=O)=O, (21) 

at the magnetic axis. For the case where the plasma is surrounded by a vacuum and an 
ideally conducting wall, the boundary conditions are discussed in [l], Chapter 4. 

1.3 Eigenvalue solvers 

Above we have seen that the Galerkin formulation of the resistive MHD eigenvalue prob­
lem leads to the complex non-Hermitian matrix eigenvalue problem 19. CASTOR contains 
five different solvers for the numerical solution of this eigenvalue problem. For more infor­
mation of numerical methods in non-Hermitian eigenvalue problems see the review paper 
by Kerner [7]. 

Solver 1 uses the standard QR algorithm of the LINPACK library to determine the 
complete spectrum of eigenvalues. However, the QR algorithm transforms the banded 
matrices in full matrices and the resulting memory requirements restrict the spatial reso­
lution considerably. As a matter of fact, only small problems with a relatively low number 
of harmonics and radial grid points can be solved with the QR algorithm (see Table (1)). 

Solvers 2, 3, and 4 apply so-called 'inverse vector iteration' schemes to calculate single 
eigenvalues. These solvers are used when one is only interested in a few modes, e.g. 
the largest positive eigenvalues in MHD stability studies or 'gap modes' (discrete global 
modes in continuum gaps). As the inverse vector iteration algorithm conserves the band 
structure of the matrices, the memory requirements are much less restrictive and much 
larger problems (much higher spatial resolutions) can be treated (see Table (1)). The 
three inverse vector iteration solvers differ in the way the matrices are stored and, hence, 
they have different memory requirements. Solver 2 uses a standard band storage mode 
and keeps both matrices in core. This is the fastest inverse vector iteration solver in 
CASTOR but the most demanding as far as computer memory is concerned. Solver 3 is 
an 'out of core' solver which means that the matrices are are stored on disk. This has 
the advantage that very big problems can be handled with matrices that do not fit into 
the central memory of the computer. The disadvantage is of course that a lot of I/O is 
required to read/write parts of the matrices from/on disk which makes this solver slow. 
Solver 4 keeps the matrices in core but stores them in a more efficient way than solver 2 
does. As a result, the memory requirements are less restrictive than for solver 2 but with 
this solver more CPU time is needed for the same job. A disadvantage of the inverse 
vector iteration solver is that a fairly accurate initial guess has to be supplied in order 
to find an eigenvalue. In principle, the solver iterates towards the eigenvalue closest to 
the initial guess. In practice, the initial guess must typically be within a factor of two or 
three of the actual eigenvalue to get convergence. 
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Solver 5, finally, is a Lanczos solver. This is a kind of combination of the two kinds 
of solvers described above. It computes more than one eigenvalue at once, typically 50 
eigenvalues, but it does not generate full matrices so that fairly big problems with high 
spatial resolutions can be handled. A major disadvantage is that the Lanczos algorithm 
is not as 'reliable' as the QR algorithm for non-Hermitian problems. The results depend 
sensitively on the provided initial guesses in the studied window of the complex eigenvalue 
plane. 
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Memory Solver 1 Solver 2 Solver 3 Solver 4 Solver 5 

Mwords (MB) M x Nr (NDIMJ) M x Nr Mmax M x Nr MxN,. 

4 (32) < 59 3 x 128 11 3 x 250 3 x 84 
5 x 45 5 x 89 5 x 30 
7 x 23 7 x 44 7 x 15 

8 (64) < 86 3 x 271 17 3 x 530 3 x 177 
5 x 97 5 x 191 5 x 64 
7 x 49 7 x 97 7 x 32 
9 x 29 9 x 58 9 x 19 

16 (128) < 123 5 x 201 25 5 x 396 5 x 132 
7 x 102 7 x 202 7 x 67 
9 x 61 9 x 121 9 x 40 
11 x 41 11 x 80 11 x 27 
13 x 29 13 x 57 13 x 19 

32 (256) < 175 5 x 408 37 5 x 805 5 x 269 
7 x 208 7 x 410 7 x 137 
9 x 125 9 x 249 9 x 83 
11 x 84 II x 166 11 x 55 
13 x 60 13 x 118 13 x 39 
15 x 44 15 x 88 15 x 29 

64 (512) < 249 7 x 420 53 7 x 831 7 x 277 
9 x 254 9 x 503 9 x 168 
11x170 11 x 336 11 x 112 
13 x 121 13 x 240 13 x 80 
15 x 91 15 x 180 15 x 60 
17 x 70 17 x 140 17 x 47 
19 x 56 19 x 111 19 x 37 
21 x 46 21 x 91 21 x 30 

128 (1024) < 352 9x510 75 9 x 1012 9 x 338 
11 x 341 11 x 678 11 x 226 
13 x 244 13 x 485 13 x 162 
15 x 183 15 x 364 15 x 121 
17 x 142 17 x 283 17 x 94 
19 x 114 19 x 226 19 x 75 
21 x 93 21 x 185 21 x 62 

Table 1: Possible spatial resolutions for given computer memory. For Solver 1 (QR) 
111 x Nr must be smaller than the number given in column 2. For Solver 3 

(out-of-core) Nr is 'unlimited'. 
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2 Installation guide 

This installation guide contains information to install CASTOR from scratch, i.e. assum­
ing none of the help programs (see below) has been installed yet. First, it is explained 
what subroutine libraries are used by CASTOR. Next, it is explained how to install these 
subroutine libraries and the program CASTOR. 

2.1 CASTOR and satellite programs 

CASTOR is not a stand-alone program. It makes use of PPPLIB (Plasma Physics Plot 
LIBrary) subroutines for generating graphics and of HGOLIB (Hans GOedbloed LIBrary) 
subroutines for the numerics. However, both PPPLIB and HGOLIB are written in stan­
dard Fortran 77, so these subroutine libraries are portable. They need to be installed 
first, before running CASTOR. In addition, CASTOR uses some BLAS routines (Basic 
Linear Algebra Subroutines) and subroutines from EISPACK and LINPACK, all available 
on Cray (standard). On other machines, the required EISPACK and LINPACK routines 
need to be linked to CASTOR after compilation. They are provided in the file eislin.f 
which needs to be installed as a library first. Moreover, on Crays CASTOR uses some 
standard Cray routines. On other machines, these routines are replaced by HGOLIB 
routines and NAG routines. 

Moreover, CASTOR and PPPLIB are provided in REVISE format. This means RE­
VISE needs to be installed first. More information on the use of REVISE and on how to 
install this package is given in Appendix A. 

Hence, the following files are required for a successful installation of CASTOR ver­
sion 9e, in addition to REVISE: cas9e.source, ppp15e.source, hgolib.f, eislin.f, 
ppplib.mk, hgolib.mk, eislin.mk. The latter three files are Unix scripts which create 
the libraries PPPLIB, HGOLIB, and EISLIN as discussed below. 

2.2 Installation of REVISE 

First of all, the REVISE package needs to be installed. The way this is done is described 
in Appendix A. 

2.3 Installation of PPPLIB, HGOLIB, and EISLIN 

CASTOR 9e works with version 15e of PPPLIB. To install this version of the Plasma 
Physics Plot library the file ppp15e. source first needs to be pre-compiled. The resulting 
fortran file has to be split in different files, one for each subroutine. This can be done with 
the 'fsplit' command. Next, each of these files needs to be compiled and the compiled 
files have to be put in a library (with the 'ar' command). For Unix machines, a script 
is available to do all this with just one command. The script is called ppplib. mk. Its 
contents is printed out in Appendix B. 

The installation of HGOLIB is very similar to the installation of PPPLIB except for 
the fact that HGOLIB is not provided in REVISE format so that the pre-compilation step 
is not required here. Again, a script is available to install HGOLIB on Unix machines. 
This script is called hgolib.mk. Its contents is printed out in Appendix C. 
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The installation of EISLIN is only required on computers other than Cray and is 
identical to the installation of HGOLIB. Hence, it suffices to replace 'hgolib' by 'eislin' 
each time it occurs in the script hgolib .mk (see Appendix C) to install EISLIN on Unix 
machines. 

2.4 Installation of CASTOR 

CASTOR is programmed in a modular structure and consists of the following parts: 

PRESET: initialization of input parameters 

TEST: built-in test cases 

EQUIL: module specifying the equilibrium 

VACUUM: module computing vacuum perturbation 

MATl-5: module computing the matrices A and B 

SOLVl-5: module containing the different eigenvalue solvers 

DIAG 1-5: module containing the diagnostic routines 

However, as mentioned above, CASTOR is provided in REVISE format. Hence, the source 
file cas9e. source contains the main program as well as all the modules. This makes the 
installation of CASTOR very simple. It suffices to make a directory, e.g. castor/, and to 
copy the file cas9e. source to it. 
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3 User guide 

This user guide describes the different steps required to run CASTOR successfully. All 
input parameters are described as well as all the output produced by a successful run of 
the code. 

3.1 Setting the dimensions 

Before compiling CASTOR, one has to specify some parameters in the source file of the 
code. These parameters determine the dimensions of the vectors and matrices required in 
the different algorithms. The parameters are to be specified in the COMDECKs COM­
MAX and COMPAR at the beginning of the source file. In COMDECK COMMAX one 
has to specify: 

LANZ = number of Fourier harmonics used for equilibrium quantities (must be lower 
than or equal to MANZ); 

MANZ= number of Fourier harmonics used for perturbed quantities (usually MANZ = 
LANZ); 

MDIF =difference between two succeeding Fourier harmonics of the perturbed quantities 
(usually MDIF = 1, but for cylindrical plasmas with elliptical cross-sections MDIF 
= 2 since even and odd Fourier numbers decouple in that case); 

LMAX = number of Fourier harmonics used for the Fourier transforms of equilibrium 
quantities (LMAX > LANZ, usually LMAX = 30) 

LVANZ = number of Fourier harmonics used for vacuum equilibrium quantities (similar 
to LANZ); 

lv!VANZ = number of Fourier harmonics used for vacuum perturbed quantities (similar 
to MANZ, must be equal to LVANZ); 

LVMAX = number of Fourier harmonics used for the Fourier transforms vacuum equi­
librium quantities (similar to LMAX); 

NG MAX = maximum number of radial grid points. 

The other parameters in COMDECK COMMAX do not need to be changed. In order 
to connect the vacuum correctly to the plasma, LVANZ must be equal to lv!VANZ and 
LVMAX and at least twice the maximum m-value specified (see below). 

In COMDECK COMPAR one has to specify: 

KILWOR = number of 64-bit words that can be used by the code; 
NDIMl = dimension of the matrices generated by the QR-algorithm. 

Both these parameters depend on the resolution specified in COMDECK COMMAX (see 
above). An estimate of the resolutions that fit in a given core memory (specified by 
KILWOR) can be found in Table (1) (for each of the solvers). The recommended value 
for NDIMl is 16 x NG x MANZ 
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3.2 Pre-compiling, compiling, and linking 

First, cas9e. source needs to be pre-compiled. The resulting fortran file cas9e. f can 
then be compiled and linked to PPPLIB and HGOLIB. On a Cray computer the following 
two commands do the job: 

1) pre cas9e 

2) cf77 -o cas9e -lnag -Wf"-em -1 cas9e.lst" cas9e.f $HOME/libs/ppplib.a 
$HOME/libs/hgolib.a 

and putting them in one script makes it even easier. 

3.3 Input files 

CASTOR uses NAMELIST formatting to read in data from input unit 'NIN' which is 
specified in COMDECK COMPIO (the default is NIN= 10). Two namelists are defined, 
viz. NEWRUN and NEWLAN. The parameters in namelist NEWRUN determine the 
solver that is used, the radial resolution, the mode numbers, the plasma density, and the 
output diagnostics. The parameters in namelist NEWLAN determine input and output 
parameters for the Lanczos solver only. 

In order to test the solvers after installation, a test case has been built in in CASTOR. 
This test case is based on a well-known Solovev equilibrium, so that the results can 
be compared to other numerical codes, such as NOVA, ERATO, and PEST [9]. The 
definitions of the inverse aspect ratio and the ellipticity (or elongation) used in CASTOR 
differ from those used by Solovev: 

E 
(i - Jl - 4E~) 

2Es 
(22) 

b R (23) Es , 
a 

where Es and Es denote the inverse aspect ratio and the ellipticity as defined by Solovev, 
respectively. The inverse transformation formulae read: 

(1 + E2)' 
(24) 

Es = (~) 1f1. (25) 

For the test case that is built in in CASTOR we have Es = 1/3 and Es = 2. 
The s-grid can be accumulated in two points s1 and s2 , e.g. in order to resolve two 

(nearly-)singular layers or a singular layer and a boundary layer. This is done in the 
subroutine MESHAC which arranges the grid points such that the integral of a given 
function is the same for all intervals [s;, s;+iJ· The function is specified in FGAUS as: 

fa+ (1 - fa) (26) 

°' 
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where f 8 is a constant ( < 1) 'back ground function' that can be used to influence the 
number of grid points that participate in the accumulation, and s1 , o-1 and s2 , o-2 determine 
the centers and widths of the Gaussian functions that are used for the mesh accumulation. 
The parameter a is a weight factor that allows to obtain a different degree of accumulation 
in the points s1 and s2 (a < 1). The parameters s1 , s2 , o-1 , and o-2 are determined in 
namelist NEWRUN (see below), but the paramters f 8 and a are specified in the code, 
viz. in subroutine EQUIL (!8 = BGF=0.3 and a= FACT=l.). 

3.3.1 Namelist NEWRUN 

MODE = control parameter, switch for used solver and testcases: 

0: termination of execution; 
1: QR algorithm; 
2: Inverse vector iteration, in-core solver; 
3: Inverse vector iteration, out-of-core solver; 
4: Inverse vector iteration, in-core version of out-of-core solver; 
5: Lanczos algorithm; 
11-15: testcase, Solovev equilibrium with ts = 1/3 and Es = 2 (t = 0.381966, 

b/a = 1.9631867, see Sect. 3.3), solver 1 - 5; 

EQNAME = name of the equilibrium (printed out as info on listing); 

NLTORE = logical switch parameter: 

. T.: toroidal equilibrium; 

.F.: cylindrical equilibrium; 

NG = number of radial grid points (:".:NG MAX); 
RFOUR(l) =the lowest poloidal mode number (others are computed with MANZ and 

MDIF); 

NTOR = the toroidal mode number; 

ETA = the plasma resistivity (17); 
ASPECT = the aspect ratio (for NLTORE = .F. only); 

QOZYL =the value of the safety factor at the magnetic axis (q0 ); 

SIGl =parameter for mesh accumulation (see Eqn. (26)); 
SIG2 =parameter for mesh accumulation (see Eqn. (26)); 

XRl =parameter for mesh accumulation, first acc. point (see Eqn. (26)); 

XR2 = parameter for mesh accumulation, second acc. point (see Eqn. (26) ); 

R\VALL = position of the wall; 

NVPSI = number of radial points in the vacuum metric; 

NGV = number of radial points in the vacuum potential solution; 

SIGV = sigma for mesh accumulation in the vacuum at the plasma-vacuum interface; 

IEQ = parameter to select the equilibrium density profile: 

1: density profile given by Eq. (2); 
2: density profile given by Eq. (3); 
3: density profile given by Eq. (4); 
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IDPOW =parameter v for density profile (see formula (2)); 

DSURF =parameter D for density profile (see formulas (2), (3), and (4)); 

DSURFl =parameter D 1 for density profile (see formulas (3), and (4)); 

DSURF2 =parameter D 2 for density profile (see formula (4)); 

DSURF3 =parameter D 3 for density profile (see formula (4)); 

NDIAGFK = print switch for Fourier components of the metric; 

YSHIFT(i) = i-th estimate of the eigenvalue for inverse vector iteration (i <:; 100); for 
solver 3, the values of VSHIFT are calculated automatic: 

NRS = number of automatic shifts of the real part 
NIS = number of automatic shifts of the imaginary part 
DRS = size of the automatic shifts of the real part 
DIS = size of the automatic shifts of the imaginary part 

EPS = relative accuracy of the eigenvalue (for vector iteration only); 

(solver 3 only); 
(solver 3 only); 
(solver 3 only); 
(solver 3 only); 

NPLOT = plot switch for solver 1-4, number of plots for QR solver, solvers 2 - 4: no 
diagnostics if NPLOT = O; 

Xlv!INQR(i) = lower limit x-axis for i-th QR-plot; 

Ylv!INQR(i) = lower limit y-axis for i-th QR-plot; 

XMAXQR(i) = upper limit x-axis for i-th QR-plot; 

YMAXQR(i) = upper limit y-axis for i-th QR-plot; 

ALPHIN = multiplication factor for equilibrium temperature, !!! HANDLE \VITH 
CARE !!! ALPHIN SHOULD BE EQUAL TO ONE !!!; 

IAS = switch parameter for symmetry in equilibrium: 

0: up-down symmetric equilibrium; 
1: asymmetric equilibrium; 

IBYAC =switch parameter for writing vacuum field data (only if .NE. O); 

GAMMA = ratio of specific heats; 

IVAC = switch parameter for shape of wall around vacuum: 

1: wall shape identical to plasma shape but RWALL times larger with respect to 
geometric axis (default); 

2,3: the wall radius with respect to geometric axis is given as a Fourier series with 
elements specified in FW(l,. . .,NF\V) (see below); 

4: use JET wall given in procedure JETGEO (only for IAS.EQ.1!); 

F\V = array with Fourier clements of vacuum wall (should have the same normalization 
as RMIN); 

NF\V = number of elements in FW (see above); 

RMIN =minor radius plasma used to scale wall radius (IVAC = 2, 3, 4). For JET wall: 
minor radius in meters; 

ZCNTR = shift (in meters) of the plasma center with respect to the vacuum wall mid­
plane (IVAC = 4); 
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3.3.2 Namelist NEWLAN 

ISTART = switch parameter: 

0: start with shift (EWSHIFT) and computation of the T-matrix; 
1: read T-matrix from disk (see Sect. 3.3.4); 

ISTOP = switch parameter: 

< 0: write T-matrix on disk and continue computation; 
~ 0: write T-matrix on disk and stop; 

KMAX = dimension of the T-matrix; 

MXLOOP = maximum number of shifts; 

!SHIFT = switch parameter controlling the shifts: 

= 1: makes shifts for EWSHIFT and OWS(l:NUS), in this case specify: 

NUS: number of given shifts in addition to EWSHIFT; 
OWS: vector with the specified shifts; 

else: makes shifts for EWSHIFT and region determined by: 

XLIML: minimum real part of investigated region; 
XLIMR: maximum real part of investigated region; 
YLIMB: minimum imaginary part of investigated region; 
YLIMT: maximum imaginary part of investigated region; 
IHOLE: .TRUE.: there is a region XHOLEL, XHOLER, YHOLEB, 

YHOLET, part of the region XLIML, XLIMR, YLIMB, YLIMT, within 
which no eigenvalues are to be searched for; 

XHOLEL: minimum real part of the hole; 
XHOLER: maximum real part of the hole; 
YHOLEB: minimum imaginary part of the hole; 
YHOLET: maximum imaginary part of the hole; 

3.3.3 Mapping file 

CASTOR needs a mapping file of the equilibrium. This file is created by HELENA. 
For a description of its contents, see the 'HELENA user and installation guide' [6]. 
CASTOR reads the equilibrium mapping file in on the input unit 'NMAP' specified in 
COMDECK COMPIO. The default specification is NMAP = 12. 

3.3.4 T-matrix 

When Solver 5 (Lanczos) is used with !START = 1 (see Sect. 3.3.2) the 'T-matrix' has 
to be supplied. CASTOR reads it in from unit 'NIN2' which is specified in COMDECK 
COMPIO (default: NIN2 = 11). The T-matrix can be computed with the option !S­
TART = 0 (see Sect. 3.3.2). 

3.4 Submitting a job 

CASTOR is usually run in batch because it requires a lot of core memory and usually 
the amount of core memory is limited for interactive jobs. When submitting CASTOR 
in batch, memory and maximum run time have to specified. These parameters determine 
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the jobclass in which the job will run and depend on the specified resolution and solver. 
The memory is determined by the parameter KILWOR (see Sect. 3.1). Also, the namelist 
input file needs to be allocated to unit 10, i.e. the input file must be called fort.10, and 
the equilibrium mapping file needs to be allocated to unit 12 (NMAP = 12 is the default, 
see COMDECK COMPIO). The following example script makes a new directory, copies 
the file sol203.data to fort.10 and the file sol203.mapping (for the built-in test case) to 
fort.12, runs cas9e, and renames the output files on a Cray computer (see below). 

#! /bin/sh 
# This is a shell script to run CASTOR in batch 
#Usage: qsub castor 

# Job parameters 
# ============== 
#QSUB -lM 64.0mw 
#QSUB -lT 60 
#QSUB 

# Working directory 
# ================= 
mkdir $HOME/castor/Test 
cd $HOME/castor/Test 

# File definitions 
# ================ 
cp $HOME/castor/sol203.data fort.10 
cp $HOME/castor/sol203.mapping fort.12 

# Run 
# ---
assign -0 -b 20 -s cos u: 15 
assign -0 -b 20 -s cos u: 16 
assign -0 -b 20 -s cos u: 17 
assign -0 -b 20 -s cos u: 18 
$HOME/castor/cas9e 

# Output 
# ====== 
mv fort. 10 input.data 
mv fort. 20 listing.data 
mv fort.25 flowplot. data 
mv fort.26 qrplot.data 
mv fort.27 vacuumfield.data 
mv CASPLOT plot .data 
rm fort. 12 
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# End of shell script 

3.5 Output files 

The CASTOR output is specified in the diagnostics module DIAG which contains three 
parts, viz. DIAGl, which determines the output for Solver 1 (QR), DIAG234, which 
determines the output for the inverse vector iteration solvers (2, 3, and 4), and DIAG5, 
which determines the output for Solver 5 (Lanczos). The output is different for the 
different solvers and some output is only generated for debugging pruposes. Below, only 
the 'standard' output of CASTOR is described. 

The CASTOR standard output consists of three files, viz. a 'listing' with information 
on the input parameters, the equilibrium that was used in the run, and the convergence 
procedure in case of the inverse vector iteration solvers; a 'flowplot file' with the informa­
tion on the velocity field that is required to make a 'flowplot' with flowplot. f (this file 
is an input file for flowplot .f); and a 'plot file' which is a postscript file which contains 
plots of parts of the spectrum for solvers 1 and 5 and plots of the components of the 
eigenvector for solvers 2, 3, and 4. More details on each of these output files is given 
below in the following subsections. 

3.5.1 Listing 

The listing is printed out on unit 'NOUT' which is specified in COMDECK COMPIO. 
The default unit number is 20. The listing contains: 

1) a print-out of the input parameters; 

2) a print-out of some calculated parameters, such as the dimension of the matrices, q1 , 

R0 , etc.; 

3) information on the equilibrium after the rescaling with respect to the given value of 
qo (QOZYL); 

4) information on the s-grid that is used (can be accumulated); 

5) information on the iteration procedure (inverse vector iteration solvers) or the obtained 
eigenvalues (solvers 1 and 5). 

3.5.2 Vector plot files 

The inverse vector iteration solvers provide information on the velocity field and the 
magnetic field in a 'vector plot files'. The velocity flowplot file is printed out on unit 25. 
Together with the 'vector plot file' from HELENA, which contains the information on 
the grid points on which the velocity components are specified by CASTOR, the program 
flowplot. f can make a flow plot of that eigenvector. 

The program vacf ield. f makes a similar 'vector plot' of the vacuum magnetic field, 
using the data printed out by CASTOR on units 27 and 28. 

The output files described above are the main output files. There are more output 
files used by CASTOR. An overview and short description is given below in Table 2. 
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unit parameter subroutine contents 

10 NIN CASTOR namelists 
11 NIN2 SOLV5 'T-matrix' (only Solver 5 with !START= 1) 
12 NMAP IODSK mapping of the equilibrium (from HELENA) 

20 NOUT IODSK, MESHAC, listing (described in Sect. 3.5.1) 
EQUILV, FKEQ, 
FFTRAN, SPLINE, 
VFKEQ, VACUUM, 
SOLV1-SOLV5, 
DIAG(l,234,5) 

22 NOUT2 SOLV5 'T-matrices a and /3' (only Solver 5) 
23 NOUT3 CASTOR order of T-matrix and eigenvalues (only Solver 5) 
24 NOUTP CASTOR text for first plot pages (input parameters) 
25 NOUTV EIGVFK velocity data for vector plot of flow 
26 NO UTE QRPLOT eigenvalues found by QR 

EIGVFK (DIAG234) eigenvalue and eigenvector 
DIAG5 eigenvalues fourd by Lanczos 

27 NOUTVB EQVAC, VACUUM data for vacuum magnetic field reconstruction 
28 NOUTB DIAG234 data for vacuum magnetic field reconstruction 

Table 2: Standard input and output units as specified in COMDECK COMPIO in 
CASTOR and their use. 

3.5.3 Plot file 

In the PPPLIB file 'CASPLOT', CASTOR plots information on the input parameters 
(on the first plot pages) and the parts of the spectrum specified in namelist NE\VRUl\ 
(for the QR and the Lanczos solver) or the components of the eigenvector (for the inverse 
vector iteration solvers). 
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A REVISE 

A.1 Introduction 

The REVISE package provides a portable facility for the systematic maintenance of large 
computer programs which combines the positive features of updating and screen editing 
(rigor and speed), while avoiding the negative ones (slowness and generation of errors). 
The REVISE package was developed to control and exchange the progression of changes, 
avoiding the introduction of mistakes, informing fellow collaborators in an international 
group of scientists of new versions of the numerical tools they are all using for different 
purposes on different computers. 

The basic information of a current version of a changing program (deck names, num­
bered lines, index, etc.) is stored into a LIST file which serves as a starting point for 
comparison with later versions of the same program. A REVISE LIST file has all COM­
MON blocks in the beginning and contains switches for parts of the program (a single 
Fortran statement or a block of statements) that need to be different at different sites 
and/or on different computers. 

A.2 Contents and use 

REVISE consists of five programs, written in Fortran 77: 

1) new.f makes a listing fn.list out of a source file fn.source. This listing contains 
information e.g. date and time it was made, absolute line numbers, line numbers 
per subroutine, and an index at the end. The optional parameter 1 in new (and 
also in mod) controls the output format (it suppresses carriage control characters, 
see the comment in the Unix script files new and mod). 

2) pre. f is a pre-compiler that converts a REVISE source file fn. source into a Fortran 
file fn. f which then has to be compiled with a standard Fortran compiler in order 
to get an executable file. The pre-compiler places the COMMON blocks where 
necessary and selects Fortran statements applicable on the specified computer at 
the specified site. 

3) com.f makes a list of modifications from an old listing (previous version of a code) 
and a new source file (new version of a code). 

4) mod. f makes a new listing out of an old listing and a list of modifications. 

5) ext. f makes a source file out of a listing (opposite of new. f). 

In new. f and in mod. f the parameter IL MAX (maximum number of lines per page) needs 
to be set (depending on local printer) and calls to DATE and TIME functions may need 
to be adjusted (depending on the computer that is used, e.g. DATE and CLOCK on Cray 
but DATIM on IBM(VM) ). In pre. f the switches for single and block line activation need 
to be set (depending on site and computer). 

After compilation one gets executable files, viz. new. o, pre. o, com. o, mod. o, and 
ext. o (when these names are specified with the -o option). However, one would then 
have to allocate all necessary files explicitly. Therefore, scripts have been written which 
take care of the proper file allocations. The call, the parameters, the input files, and the 
generated output files are specified in Table A.I. For the parameters fn, nfn, mfn the 
user has to specify the file names. If mfn is omitted in com, a file name "m+nfn.modif" 
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Call I Input files I Output files I 

new fn [!] fn.source fn. list 

pre fn [1] fn.source fn.f 

com fn nfn [mfn) fn.list mfn.modif 
nfn.source 

mod fn mfn [nfn) [!] fn. list mfn. listm 
mfn.modif nfn.listr 

ext fn fn.list(r) fn.source 

Table A.1: The REVISE Unix script files 

will be constructed. If nfn is omitted in mod, creation of "nfn.listr" will be suppressed. 
The optional parameter 1 in new and mod controls output format. When the scripts are 
called without any input parameters or with wrong or insufficient input, information on 
the required input parameters is 'echoed' on the standard output device. 

A.3 Installation of REVISE 

On Unix systems, REVISE can be installed in the following way: 

1. make a directory 'revise'; 

2. copy the files new. f, pre. f, com. f, mod. f, ext. f, and revise. install m this 
directory; 

3. edit the files new. f, com. f, and pre. f to adjust the parameters to your site or 
computer as described in the previous section; 

4. replace the fortran compiler call cf77 in the file revise. install if your fortran 
compiler is different, e.g. cf77 needs to be replaced by xlf on IBM RISC workstations; 

5. execute revise. install, this creates the files new. o, pre. o, com. o, mod. o, and 
ext .o; 

6. copy the script files pre, new, com, mod, and ext to the directory 'revise' and 
put this directory iu your search PATH. 

A.4 IBM-VM version of REVISE 

The above descriptions of the contents, use, and installation of revise apply to Unix sys­
tems. There is also a version of REVISE available for IBM with the VM operating system. 
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Call Input files I LRECL I Output files I LRECL I 

NEW fn [1] fn SOURCE A 80 fn LIST A 93 

PRE fn [1] fn SOURCE A 80 fn FORTRAN A 80 

COM fn nfn [mfn] fn LIST A 93 mfn MODIF A 80 
nfn SOURCE A 80 

MOD fn mfn [nfn] [1] fn LIST A 93 mfn LISTM A 93 
mfn MODIF A 80 nfn LISTR A 93 

EXT fn fn LIST(R) A 93 fn SOURCE A 80 

Table A.2: The REVISE VM EXEC files 

In this case, the fortran files are called NEW FORTRAN A, PRE FORTRAN A, COM 
FORTRAN A, MOD FORTRAN A, and EXT FORTRAN A, respectively. The five pro­
grams are compiled with the FORTVS2 compiler, without optimalisation or vectorisation. 
This produces five files NEW TEXT A, PRE TEXT A, COM TEXT A, MOD TEXT A, 
and EXT TEXT A. 

The script files are replaced by EXEC files written in REXX but the call and the 
parameters are essentially the same as for the Unix scripts and are specified in Table A.2. 
Again, for the parameters fn, nfn, mfn the user has to specify the file names. If mfn is 
omitted in COM, a file name "Mnfn MODIF" will be constructed. If nfn is omitted in 
MOD, creation of "nfn LISTR" will be suppressed. All files have RECFM F and LRECL 
as indicated in the table. The optional parameter I in NE\,Y and MOD controls output 
format. 

A.5 List of files 

The complete list of files required to install REVISE consists of: 

• the 5 fortran files new.f, pre.f, com.f, mod.f, and ext.f (or NEV/ FORTRAN A, PRE 
FORTRAN A, COM FORTRAN A, MOD FORTRAN A, and EXT FORTRAN A, 
respectively, on IBM VM), 

• the 5 script files new, pre, com, mod, and ext (or the 5 EXEC files NEV/, PRE, 
COM, MOD, and EXT on IBM VM), 

• the installation file revise.install, 

• the information file revise.note (contains a short description of REVISE and on how 
to use it on VM), 

i.e. 12 files in total. 
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B Installation script for PPPLIB 

The following Unix script is called 'ppplib.mk'. It installs PPPLIB version 15e from input 
file $HOME/ppplib/ppp15e. source and puts it in the directory $HOME/libs. 

#This shell script ppplib.mk constructs the ppplib.a library 
echo ============================= 
echo Making working directory 
echo ============================= 
mkdir $HOME/wd 
echo ============================= 
echo Copying ppp15e.source 
echo ============================= 
cp $HOME/ppplib/ppp15e.source $HOME/wd/ppplib.source 
cd $HOME/wd 
echo ============================= 
echo Precompiling ppplib.source 
echo ============================= 
pre ppplib 
echo ============================= 
echo Splitting ppplib.f 
echo ============================= 
fsplit ppplib.f 
echo ============================= 
echo Cat BLOCK DATA subpograms 
echo ============================= 
cat begplt.f lhead.f pos.f calpos.f ebdasc.f > cat.f 
mv cat.f begplt.f 
echo ============================= 
echo Compiling all ppplib routines 
echo ============================= 
\rm ppplib.f 
cf77 *. f -c 
\rm *.f 
echo ============================= 
echo Creating library ppplib.a 
echo in directory $HOME/libs 
echo ============================= 
ar vq ppplib.a *·O 
ranlib ppplib.a 
mkdir $HOME/libs 
mv ppplib.a $HOME/libs/ppplib.a 
\rm * 
cd $HOME 
rmdir wd 
#end of shell script 
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C Installation script for HGOLIB 

The following script, hgolib.mk, creates a library from input file $HOME/libs/hgolib.f 
and puts it in the directory $HOME/libs (which is constructed if it does not yet exist). 

#This shell script hgolib.mk constructs the hgolib.a library 
echo ============================= 
echo Making working directory 
echo ============================= 
mkdir $HOME/wd 
echo ============================= 
echo Copying hgolib.f 
echo ============================= 
cp $HOME/libs/hgolib.f $HOME/wd/hgolib.f 
cd $HOME/wd 
echo ============================= 
echo Splitting hgolib.f 
echo ============================= 
fsplit hgolib.f 
echo ============================= 
echo Compiling all hgolib routines 
echo ============================= 
\rm hgolib. f 
cf77 *.f -c 
\rm *. f 
echo ============================= 
echo Creating library hgolib.a 
echo in directory $HOME/libs 
echo ============================= 
ar vq hgolib.a *.o 
ranlib hgolib.a 
mkdir $HOME/libs 
mv hgolib.a $HOME/libs/hgolib.a 
\rm * 
cd $HOME 
rmdir wd 
#end of shell script 
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