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Chapter 1 

Introduction 

This report concerns the magnetohydrodynamic (MHD) stability analysis of the 
South Korean KSTAR tokamak project, a follow-up of the KT-2 project [11]. At 
present the project is in the design phase. Table 1.1 contains the most up-to-date 
design parameters of the KSTAR tokamak relevant for MHD studies that were known 
at the time of writing. 

Description symbol value 

minor radius a 0.5 m 

major radius Ro 1.8 m 

inverse aspect ratio E 0.278 

ellipticity I< 2.0 

triangularity 0 0.8 

magnetic field strength Bo 3.15 T 

Toroidal current Ip 2 MA 

normalized current I 1.596 

Table 1.1: Parameters of the KSTAR tokamak. 

The KSTAR tokamak is intended to be operated with a large, non-inductively 
driven bootstrap current. This bootstrap current is proportional to the pressure gra
dient and gives rise to off-axis peaked current densities and inverted q-profiles. Study 
of the stability tokamak equilibria with inverted q-profiles for KSTAR parameters is 
therefore the main subject of our stability studies. 

Basically, our stability analysis splits into two parts, a study of ballooning and 
a study of global instabilities. In the first part, we investigate stability of KSTAR 
tokamak plasmas with respect to ballooning instabilities. As compared to the KT-2 
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tokamak design, KSTAR has a much more extreme elongation. Whereas the HBT 
code could be used for the computation of equilibria and ballooning stability of 
KT-2, this is no longer adequate for KSTAR since the conformal methods used in 
that code generate a disproportionate number of grid points near the equatorial 
plane. Therefore, a new state-of-the-art FORTRAN90 ballooning stability code 
was developed, called BSE (Ballooning Stable Equilibria). It requires input of an 
accurate equilibrium, such as provided by HELENA [8]. A user guide for BSE is 
provided in Appendix A. ' 

In the second part of our stability study, instabilities with low toroidal mode 
numbers are studied. From previous studies, see for example Ref. [7] and references 
therein, it is known that infernal stabilities can put a limit on the maximum attain
able plasma betas in plasma with inverted q-profiles. In this report, we discuss the 
ideal and resistive MHD analysis for low-n instabilities, for the profiles used in the 
ballooning section. 

1.1 Equilibrium 

For purpose of reference we here collect the basic quantities and equations describing 
the equilibrium as solved by HELEN A. 

From the cylindrical R,Z ,¢ coordinates, with the center of the plasma given by 
Ro and the horizontal size by 2a, convenient dimensionless coordinates are obtained: 

x= 
R-~ 

a 
z 

y= -. 
a 

The inverse aspect ratio is given by 

a 
E=

- Ro' 

(1.1) 

(1.2) 

a dimensionless flux label 0 :$ 'ljJ '.O 1 is obtained by dividing the poloidal flux by the 
total poloidal flux W 1: 

w 
'ljJ = '111' (1.3) 

and an important parameter proportional to the value of the edge safety factor q1 

is given by 

a2Bo 
a= -- '111 , 

where Bo is the value of the vacuum magnetic field at R = Ro. 

(1.4) 

Exploiting these parameters, the two arbitrary flux functions p(W) and RB¢ = 

F(w) are replaced by dimensionless functions in terms of the flux label '1/J: 

µoa 2 

P('ljJ) = -B2 p(W), 
E 0 

(1.5) 
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2 2 

G(1/!) = 2 ~B2 [F2(w) - R~B~] + µ2oB'\p(ll1). 
a o < o 

(1.6) 

In the Grad-Shafranov equation only their flux derivatives appear, which facilitates 
the introduction of the two unit profiles r(1/J) and II(1/J) describing the freedom of 
the flux functions: 

dG 
d1/! = -Af(1/!), • (1.7) 

The basic dimensionless equilibrium equation then takes the form 

1/!xx + 1/!yy - 1: <X 1/!x =A [r(,µ) +Bx (1 + ~<x) II(1/!)], (1.8) 

which is to be solved subject to the boundary conditions 1/J = 1 at the plasma 
boundary and 1/J = 1/Jx = 1/!y = 0 at the magnetic axis. This turns both A and B 
into eigenvalues, related to the physical parameters q1 and (3. 

The cross-section of the plasma is prescribed by 

x = a cos ( 'Y + o sin 'Y), 

y=bsin'Y, 

(1.9) 

(1.10) 

where 'Y is an auxilary angle, 1< = bf a is the ellipticity, and o is the triangularity of 
the cross-section. 

Important physical parameters are the poloidal beta: 

f3 
= BITS<p> 

p - 2 l µoip 

where S is the cross-sectional area, the toroidal beta: 

(3, = 2µo ~P >, 
Bo 

and the edge safety factor: 

_ f 27ra
2 Bo 

qi= ' µoRoip 

(1.11) 

(1.12) 

(1.13) 

where f is an order of unity factor to be obtained from the equilibrium solution. 
The latter quantity is related to the normalized plasma current: 

(1.14) 

In the Troyan scaling the so-called normalized beta appears: 

(1.15) 
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Finally, the three parameters /3p, f3t, and q1 exhibit the following important scaling 
relationship: 

(1.16) 

where a= S/(7ra2). 
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Chapter 2 

Ballooning stability analysis 

2.1 Summary of ballooning theory 

At high beta, the most dangerous instabilities, in terms of limiting the maximum 
obtainable (3, are usually characterized by highly localized perturbations. These 
instabilities, the ballooning modes [1], are driven by the pressure gradient p 1 and the 
curvature of the field lines, producing a negative potential energy on the outside of 
the tokamak. 

The ballooning ordering is one where the wave vector k is large, but w finite 
and k is constrained to be perpendicular to the total magnetic field B in all orders. 
For this ordering, the compression term in the potential energy oW of the pertur
bations is assumed to be small. Fnrthermore, up to second order, the kinking term 
proportional to the parallel current density vanishes. The remaining terms in oW 
describe a competition between the destabilizing effect of unfavorable curvature and 
the stabilizing effect of field line bending. 

By choosing the poloidal {) such that the magnetic field lines become straight in 
the ({), 1>) plane, oW can be written as [6] 

1
00 

[ 1 ( k2) 1 (8X) 2 

oW('ljJ) = -oo R2B~ 1 + k~ J 8{) 

-
2
- (Kn - kn Kg) p1 X 2] d{). (2.1) 

RBp kn 

Here, Bp and B¢ are the poloidal and toroidal magnetic field, respectively, R is the 
major radius, and 

J = (\17/J x \/{). 'Vcp)-1 = Rjg11g22 -gr2 (2.2) 

is the Jacobian. The two components of the local wave vector are given by 

(2.3) 
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(2.4) 

where 

q = IJ/R2 = q(.,P) (2.5) 

is the safety factor. Furthermore, 

R ( 912) 
"P = J a,µ - au 922 J Bp, (2.6) 

( 
912 ) "t = Bp a,µ - -an R 
922 

(2.7) 

are the poloidal and toroidal curvatures of the magnetic surfaces, respectively, and 

(2.8) 

(2.9) 

are the normal and geodesic curvature component of the magnetic field line curva
ture. 

Eq. (2.1) is derived by the so-called ballooning transformation to an extended 
domain -oo < {) < oo of the poloidal angle, developed by Connor et al. [l]. This 
avoids the problem of the incompatibility of shear with poloidal periodicity. This 
way, the analysis of periodic eigenfunctions over the domain 0 < {) < 27r is replaced 
by a summation over non-periodic "quasi-modes" in the extended domain. So, by in
troducing the ballooning transformation followed by the quasi-mode form decouples 
the stability analysis from surface to surface and provides a complete minimization 
of 6W at large toroidal mode number n. 

Minimization of 6W leads to the Sturm-Liouville problem 

(2.10) 

The value of {)0 is determined by minimizing the potential energy with respect to 
fJo: 

a(6W) = O 
afJo . 

(2.11) 

The resulting growth rate will have a maximum value then. 
In practice, one is not interested in whether or not the plasma is stable, but one 

wants to exclude instabilities that grow faster than a certain small threshold growth 
rate. This leads to the concept of the u-stability [4], where an equilibrium is called 
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u-stable if no eigenvalues w2 < -u2 exist, and u-unstable if such eigenvalues do 
exist. The resulting modified potential energy for this case is 

(2.12) 

where 

1 ( k2) 1 P(iJ,,P)=R2B~ l+k~ J' (2.13) 

( ) 2J ( kn ) I 2 2 QiJ,,P =-RBp Kn-k~"g p+upJP. (2.14) 

Equation 2.12 is implemented in the ballooning stability code BSE. 

2.2 Numerical solution 

In most cases of ballooning analysis, one is interested in whether or not the equilib
rium is u-stable, i.e., one is only interested in the sign of the minimum of the modified 
potential energy owu. In the BSE code, the Suydam method is implemented. This 
method is based on a finite difference scheme introduced by Suydam to calculate the 
marginal stability of an axisymmetric cylindrical plasma column [14]. The method 
can also be applied to ballooning analysis [3]. 

By replacing the variables in the energy functional Eq. (2.12) by their centered 
finite difference expressions, arranging the resulting terms for owu to obtain squares, 
and truncating the extended domain to a finite one with N intervals, Eq. (2.12) can 
be rewritten as 

N 

owu = L a;(Y;) 2
, ao = Ao,o, 

i=O 

A2 1. ,_ ' 
ai = Ai,i - --' , 

O'.i-1 

The tridiagonal matrix A;,j ( i, j = 0, ... N) is given by 

1 6.{) 
A;,;= 6.{) (Pi-1/2 + PH1;2) + 4 (Qi-1/2 + Q;+i;2), 

1 6.{) 
A;+1,i = Ai,i+l = - 6.iJPi+i/2 + 4QH1/2, 

A;,j=O, ifcj-1,j,j+l, 

with the initial condition 

P-1/2 = Q-1/2 = 0, 

where 6.{) is the mesh size of the poloidal angle. 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 



From Eq. (2.15) one can see that owa is positive definite if and only if all 
the a;'s are positive. Thus, if one of the <>i's is negative the flux surface under 
consideration is ballooning u-unstable. The resulting procedure is quite fast and 
converges rapidly, even when the mesh size t..{) is large or when the eigenfunction 
has a singularity inside the truncated interval. Note that when the ballooning mode 
is centered around {)o = 0, we only need to integrate from {) = 0 to oo. 

According to [3], the position {)i where the a;'s become negative may be detected 
on an angular interval of the order of the decay length of the eigenfunction, i.e: of the 
order of the half-width of the eigenfunction. Furthermore, the growth rate always 
decreases as the marginal value {)i increases. Thus, setting a maximum value on 
{) is equivalent with considering u-stability, i.e., neglecting modes with very small 
growth rates. Finally, the marginal value of {)i converges very fast with decreasing 
values of the mesh size f,,{), Below a certain value oft,,{), the value of {)i remains 
practically constant. 

2.3 Optimized ballooning stable profiles 

In this section we calculate the ballooning stability properties for equilibria which 
resemble equilibria calculated by the transport code JETTO for typical reversed 
shear JET discharges. The considered profiles are the same as the ones used by 
Poedts et al. [ll] in their stability study of KT-2 plasmas. The goal is to get a 
measure for the maximum attainable beta with respect to ballooning stability for 
such typical reversed shear equilibria. 

The equilibrium is calculated with HELENA [8, 13] using 41 radial and 129 
angular grid points. However, the angular resolution of metric coefficients in the 
mapping file, i.e. the information needed for CASTOR and BSE, is down sized to 65 
angular grid points. No grid accumulation is used. The profiles f(,P) and II(,P) are 
specified in HELENA through the IGAM=4 and IPAI=7 input switches by prescribing 
their values on 21 grid points evenly spaced in ,ji/j. These profiles are then mapped 
onto 41 grid points by interpolation. To do this we had to adapt HELEN A since the 
original interpolation of the profiles assumed them to be specified on an equidistant 
mesh in 1)1. In Fig. 2.1, the profiles r and II are shown. For a = 1.93 and B = 2.5, 
the flux coordinate grid calculated by HELENA is shown in Fig. 2.2. 

The equilibrium corresponding to the considered profiles is ballooning unstable 
with growth rates greater than 0.1 TA1, where TA= RM,jµopM/ BM, and RM is the 
radius of the magnetic axis, and PM and BM are the magnitudes of the density and 
the magnetic field on axis. The unstable surfaces are located in the region of small 
positive shear. Since near the magnetic axis an additional extremum is present 
(although much less pronounced than the global minimum), there are also some 
unstable surfaces in the small positive shear region associated with this extremum 
position. 

To stabilize the above equilibrium we fix r (which more or less fixes the current 
density profile) and locally decrease the pressure gradient. The following procedure 
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3.0 ..----.....----------...--...--...----. 

2.0 

1.0 ........ ....... ...... ------

r 
II 

-------------...... 
0.0 ..__....__...__....__...__..__.._ ___ ..._ __ __... 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2.1: r and II profiles exploited for the ballooning stability studies. 

turned out to be the most efficient: 

1. Start at the unstable flux surface 1/J' located in the positive shear region closest 
to the qmin flux surface. 

2. Decrease II('ljJ') with 0.01 until the flux surface 1/J' is ballooning stable. 

3. Repeat steps 1-2 until all flux surfaces in the positive shear region are stabi
lized. 

4. Perform steps 1-3, for the unstable surfaces (if present) in the small positive 
shear region near the axis. 

The obtained pressure profile is locally marginally ballooning stable in the sense that 
an increase of II with 0.01 at any of the surfaces that were initially unstable results 
in instability. An optimization is then performed by increasing the Shafranov shift 
(through the parameter Bin HELENA) until the equilibrium is globally marginally 
ballooning stable. 
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1. 00 

-1 . 00 

0.00 
x 

0.60 1. 20 

I SHAPE • ' ELL IP - 2.0000, TRIA 0. 8000 

CIJAD - 0. 0000. """'' 32 

•GAM - ' 
I PAI - 7 

EPS • o. 27800, ALFA • 1 93000 

B • 2.50000 

?~ !~~!. ~~ ~~~ ! ~~~: 
A • 1.62919 

POLOJDAL BETA 

TOROIDAL BETA 

TOT AL CURRENT 

Troyon factor : g • 

0.1731E+01 

0.5990E-01 

0 1587E+01 

0.4742E+01 

g_N • 0.3774E+01 

a· . 1.11520 

Figure 2.2: Straight field line coordinate grid and parameters for the equilibrium construction 
with HELENA (ALFA=l.93, 8=2.5, NR=41, NP=129, NRMAP=41, NPMAP=65). 

Figure 2.3 shows the pressure profiles, the averaged current density, and the q
profiles for three ballooning stable equilibria with different Shafranov shifts. It is 
clear that the current density and the q-profile are almost unaltered except for a 
small region near the axis. This shows that fixing the r profile is sufficient to keep 
the current density more or less constant. Equilibria B and C have small positive 
shear on axis which is favourable for stabilizing the pressure driven interchange 
instabilities. Equilibrium C is near global marginal ballooning stability in the sense 
that a tiny increase of the Shafranov shifts results in instability for almost all flux 
surfaces. The values of the input and output parameters for the three equilibria are 
listed in Tables 2.3 and 2.3. 

Compared to KT-2 plasmas, it is clear that higher poloidal and toroidal plasma 
betas can be obtained. Assuming that the highest attainable stable beta for plasma 
with inverted shear scales linearly with the normalized plasma current J, as found 
by Sykes et al. [15] for positive shear plasmas, the higher stable betas are due to a 
higher normalized plasma current (l = 0.838 for KT-2 versus l = 1.596 for KSTAR). 
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1/Jmarginal 

A 1.60 1.60 5.67 3.53 1.76 1.35 8.6 0.30-0.49 

B 1.63 1. 77 6.41 3.94 1.55 1.27 9.0 0.04-0.56 

c 1.59 1.88 6.52 4.10 1.45 1.26 9.7 0.01-0.56 

Table 2.1: Equilibrium parameters for the three ballooning stable equilibria A, B, and C. E"qui· 
libria A and B are locally marginal ballooning stable. Equilibrium C is near global 
marginal stability. 

I Eq. I ALFA I A B 

A 1.93 1.63 2.5 

B 1.85 1.62 3.0 

c 1.85 1.61 3.5 

Table 2.2: HELENA parameters for the equilibria A 1 8 1 and C. 

Notice, that the normalized f3N 's also have relatively large values. 
Although we used a fixed r-profile and performed an optimalization for the 

pressure only, ballooning stable equilibria with respect to the first region of stability 
with high values for the toroidal plasma beta were obtained. Even higher values for 
beta might be achieved by also optimizing the current density profiles. 

2.3.1 Scaling of optimized critical toroidal beta with plasma cur
rent 

In this subsection we investigate the scaling of the optimal critical toroidal plasma 
beta with the plasma current. We have done the calculations in the same way 
ag described above, keeping the r-profile fixed and adjusting the pressure gradient 
locally, but with 257 poloidal grid points and 129 radial grid points. This was done 
to obtain better converged critical ballooning beta values. 

The optimized beta values for three different values of the normalized plasma 
current are shown in Table 2.3. Since f3N "' 4 for the different plasma currents 
considered and {31 = f3N I, it follows that f3t scales linearly with the plasma current. 

2.4 Shaping effects 

In this section we consider shaping effects on ballooning stability. We vary the 
ellipticity, the triangularity, and the aspect ratio, and calculate the critical toroidal 
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Figure 2.3: The pressure P (top left)i averaged current density < J > (bottom left) 1 and the 
safety factor q vs. 'I/; for the equilibria A, B, and C. 
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1.00 3.15 4.37 4.35 

1.62 1. 73 6.25 3.85 

1.88 1.55 7.51 3.99 

Table 2.3: Optimized critical ballooning betas for three different values of the normalized plasma 
current. 

beta value as a function of the plasma current. The profiles r and II are the same as 
those of equilibrium C and they are kept fixed. Results are shown in Figs. 2.4-2.6. 
For convenience, the actual current for the KSTAR tokamak and not the normalized 
current is plotted in these figures. The calcutions in this section were carried out 
with 129 poloidal grid points and 81 radial grid points. 

In Fig. 2.4 the ellipticity is varied, in Fig. 2.5 the triangularity is varied, and 
in Fig. 2.6 the inverse aspect ratio is varied. The latter variation is not a variation 
of shaping. However, it is included here since it is a geometrical variation like the 
shaping ones. 

When we focus on the plots of f3t in Figs. 2.4-2.6, it is clear that all the graphs 
have similar forms. First, their is a phase where f3t growths approximately linearly 
with I. Second, their is a sudden sharp decrease in f3t. The current at which this 
second phase sets in depends on the the specific values of the ellipticity, triangu
larity, and the inverse aspect ratio. For fixed plasma current in the first phase, 
increasing the ellipticity decreases the toroidal and normalized betas. An increase 
of the triangularity increases these betas whereas an increase of the inverse aspect 
ratio decreases them. 

For constant aspect ratio, the maximum value of f3t "' 6.0 is obtained for a 
plasma current around 2 MA. This is no coincidence, of course, since we started 
with profiles that were optimized for a plasma current of 2 MA and " = 2.0, o = 0.8, 
and E = 0.278. For E = 0.333, however, the maximum f3t "' 6.4 at l"' 2.4 MA. 

The two phases visible in the (3, plots are also visible in the f3N plots. The parts 
of the graphs where f3N increases slightly with increasing plasma current correspond 
with the first phases, i.e., with the parts of the graph of f3t versus I where there is 
approximately a linear dependence. In this phase there is a clear dependence on the 
varied parameter (1', o, or e). The second phase where f3N decreases rapidly shows 
less dependence on the varied variable. This is especially evident in the normalized 
beta plot in Fig. 2.5 where the triangularity is varied. The curves overlap greatly. 

Note that for high triangularity and small ellipticity high values of the normalized 
beta, f3N > 5 can be achieved for low plasma currents. For optimized equilibrium 
profiles one would even get higher values. 

It also follows from the normalized beta plots in Figs. 2.4 and 2.5, and in a 
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somewhat less convincing way from Fig. 2.6, that 

where a and b are constants with respect to the varied parameter: 1;, 6, or " The 
specific values, however, depend on the values of the fixed parameters. For Fig. 2.4: 
a = 7.3, b = 1.65, for Fig. 2.5: a = 7.1, b = 1.65, and for Fig. 2.6: a= 6.2, b = 1.2. 
This is the same as saying that the curves (31 for the different values of the ellipticity 
in Fig. 2.4 (or the triangularity or inverse aspect ratio in Figs. 2.5 and 2.6) are 
enveloped by a parabola: 
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Figure 2.4: (a) Critical toroidal beta f3t) (b) critical normalized toroidal beta fJN 1 and ( c) critical 
value of t:/3p as a function of the plasma current I for various values of the ellipticity 
K. The triangularity and the inverse aspect ratio were fixed: 6 = 0.8 and € = 0.278. 
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(c) 
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Figure 2.5: (a) Critical toroidal beta f3t 1 (b) critical normalized toroidal beta /3N, and {c) critical 
value of E/3p as a function of the plasma current I for various values of the triangularity 
0. The ellipticity and the inverse aspect ratio were fixed: ,.., = 2.0 and f. = 0.278. 
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Figure 2.6: (a) Critical toroidal beta f3t, (b) critical normalized toroidal beta f3N, and (c) critical 
value of E/3p as a function of the normalized plasma current for various values of the 
inverse aspect ratio c. The ellipticity and the triangularity were fixed: K = 2.0 and 
8 = 0.8. 

21 



22 



Chapter 3 

Low-n stability analysis 

3.1 Introduction 

This chapter describes the low-n stability analysis of the marginal ballooning stable 
equilibrium B shown in section 2.3 (Fig. 2.3). 

First, we discuss the convergence properties of the numerically computed growth 
rates in section 3.2. In section 3.3, we study the internal and external ideal insta
bilities. Both the effect of the poloidal beta and the position of an ideal conducting 
wall are presented. Resistive instabilities and the effect of resistivity on external 
instabilities are investigated in section 3.4. Finally, in section 3.5 we discuss the 
effect of the shape of the plasma. 

3.2 Convergence properties of calculated Iow-n instabil
ities 

Low-n instabilities are investigated with the spectral MHD code CASTOR [9, 12]. 
Convergence studies with respect to both the number of radial grid points and the 
number of Fourier harmonics are necessary since the KSTAR plasma cross-section is 
far from circular so that a lot of harmonics are required to get an accurate estimate 
of the growth rates. Furthermore, since a lot of rational q-surfaces are located in the 
plasma when inverted shear equilibria are considered (in general q1 is large) a high 
radial resolution and a large number of Fourier harmonics are required to resolve 
the structure of the eigenfunctions on these surfaces well. 

In Fig. 3.1 we show the convergence of the growth rate 'Y as a function of the 
number of Fourier harmonics M for a typical n = -1 instability found at Qmin = 1.99. 
Here and in all next figures, the growth rate is normalized to Ti 1. From Fig. 3.1 
it becomes clear that more than 21 harmonics are necessary to make a reliable 
extrapolation of the growth rate for M-2 --+ 0. However, for instabilities with 
smaller growth rates, especially when one enters a stability window, we have often 
found that convergence is not as smooth as in Fig. 3.1 and that many more harmonics 
as well as radial grid points are needed to make an accurate extrapolation of the 
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growth rate. It also turns out that the equilibrium should be calculated with enough 
resolution since this improves the convergence of the growth rate considerably. This 
is shown in Fig. 3.2. 

0.0225 

0.0220 

y 0.0215 

0.0210 

0.0205 

0.002 0.004 0.006 
M-2 

0.008 0.010 

Figure 3.1: Typical convergence behavior of the growth rate of a low-n instability with the 
number of Fourier harmonics M that is used in the CASTOR stability code for a 
highly elongated and triangular cross-section plasma like KSTAR. The number of 
radial grid points used in the calculations of the gro,vth rate was 101. 

3.3 Ideal instabilities 

Previous work on infernal modes [10, 7] revealed that the occurrence of infernal 
instabilities sensitively depends on the value of nqmin, where n is the toroidal mode 
number of the perturbation and Qmin is the minimum in the q-profile. Infernal 
instabilities only occur if Qmin lies just below a rational q-value. These instabilities 
are driven by the pressure gradient and they can be stabilized by shear. 

For the ballooning stable equilibrium B computed in section 2.3, a large region 
of low shear around Qmin is present so that infernal modes may be present. However, 
the pressure gradient is also very small so that these modes may be suppressed. 

3.3.1 Internal modes 

Since Qmin plays such a crucial role in determining stability with respect to infernal 
modes, a scan has been made of the ideal growth rate versus Qmin for different values 
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Figure 3.2: Convergence behavior of the growth rate of a low-n instability with the number of 
radial grid points used in the CASTOR stability code for a highly elongated and 
triangular cross-section plasma like KSTAR. The number of Fourier harmonics used 
in the calculations is M = 21. Three separate curves are shown representing the 
same instability but calculated using HELENA equilibria that were computed with 
100, 151, and 201 radial grid points, respectively. All three equilibria were calculated 
with 129 poloidal grid points. 

of the poloidal beta, /3p· In Fig. 3.3, qmin was varied through the safety factor on
axis qo. Increasing qo increases qm;n, but decreases the total plasma current IP. The 
poloidal beta, /3p, was varied through the HELENA input parameter B. Furthermore, 
we put an ideally conducting wall on the plasma. The calculations were done using 
101 radial grid points and 25 Fourier harmonics in CASTOR. For the instabilities 
around qmin = 1.0, we decreased the number of radial grid points to 51. 

Fig. 3.3 reveals that the plasma is stable against ideal internal n = -1 instabili
ties for /3p slightly below 1.77 and qmin > 1.23, i.e., Ip< 2.10 MA. This shows that 
these modes do not give a more severe limit on the poloidal beta than the high-n 
ballooning modes. The ballooning modes are stable for /3p < 1.77 and qmin > 1.27, 
i.e., Ip< 2.04 MA (see table 2.1). 

The radial mode structures of the instabilities for /3p = 1.10, qmin = 1.06 and 
for /3p = 2.13, qmin = 2.03 are shown in figure 3.4. These instabilities appear to 
be the m/n = 1/1 and m/n = 2/1 internal kink, respectively. The m/n = 2/1 
internal kink is stable for f3r just below 1.77. However, the instability at qmin = 1.0 
is difficult to stabilize by decreasing f3r· Like in the stability analysis of the KT-2 
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Figure 3.3: Growth rates of the largest n = -1 ideal instability versus Qmin for different values 
of f3p· The wall put on the plasma. The scan over Qmin is obtained by scaling the 
equilibrium through q on axis, q0 . 
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Figure 3.4: (a) Mode structure of the ideal internal instability at {3p = 1.10, q0 = 1.551 and 
Qmin = 1.06 (cf. Fig. 3.3). {b) Mode structure of the ideal internal instability at 
{3µ = 2.13, qo = 2.35, and Qmin = 2.03 in Fig. 3.3. For both modes, the largest 
Fourier harmonics of the velocity component normal to the flux surfaces, V1 ....., ~ · \11/J 
are plotted versus s = .Jilj. The safety factor profile is also shown. 
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tokamak [ll ], no infernal instabilities were found. At least, they do not limit the 
maximum obtainable poloidal beta. 

3.3.2 External modes 

In Fig. 3.5, we have plotted the two largest growth rates, /t and 12, versus the safety 
factor on the plasma edge, q1, for three different positions of the ideal conducting wall 
rw (normalized to the minor plasma radius). The poloidal beta is fixed at 1.10. The 
growth rates are calculated using 101 radial grid points and 25 Fourier harmonics 
and the vacuum is solved using 101 grid points and 25 harmonics. Furthermore, the 
ideally conducting wall has the same shape as the last closed flux surface. 
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--'YI' rw=l.050 
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~'Y2 
--y,, rw=l.010 
A--:&y, 

0.00 L'"~'=l~.......,,.._L-~_L-~----'-_-:---...-r"""!_~__J 
6.0 7.0 8.0 10.0 11.0 12.0 

Figure 3.5: Growth rate of the two largest n = -1 ideal instabilities versus qi for three different 
values of the poloidal beta. This scan over q1 is obtained by scaling the equilibrium 
through qo. The poloidal beta is fixed at 1.10. 

The growth rates are huge and these external instabilities can only be made 
stable by bringing the wall below 1 % of the minor plasma radius. For Q1 = 9.41 
and r w = 1.025, the radial mode structure of /2 is shown in figure 3.6. This mode 
is localized at the plasma-vacuum interface in the region of high shear. The most 
dominant m-modes are the ones corresponding to the highest two rational q-surfaces 
located within the plasma. 

In Fig. 3.7, the effect of poloidal beta on the two largest growth rates 11 and /2 

27 



0.10 
• m .. 5 
., m-6 
.t.m-7 9.0 
•m-8 

0.05 • m-9 
'*'m-10 
xm-11 
<- m-12 

7.0 

v1 0.00 q 

5.0 
-0.05 

-0.10 ~-~----~-~----~-~-~ 3.0 
0.96 0.98 1.00 

s 

Figure 3.6: Mode structure near the plasma edge of the most unstable external instability1 12, at 
q1 = 9.41, where rw = 1.025, /Jp = 1.10 (cf. Fig. 3.5). The largest Fourier harmonics 
of the velocity component normal to the flux surfaces are plotted versus s = J1ft. 
The safety factor profile is also shown. 
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Figure 3. 7: Growth rates of the t\VO largest n = -1 ideal instabilities versus q1 for three different 
values of the poloidal beta (rw = 1.025). 
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versus Q1 are shown. The wall is fixed at rw = 1.025. The number of grid points and 
Fourier harmonics that are used is the same as in Fig. 3.5. Decreasing the poloidal 
beta lowers the growth rates, but even for /Jp = 0.51 they are still considerable as is 
the width of the unstable Qi-window. 

3.4 Resistive instabilities 

Fig. 3.8 shows the effect of the resistivity, ri, on the growth rates of the two largest 
external instabilities for QI = 9.41, /Jp = 1.095, and rw = 1.025 {cf. figure 3.5). Here, 
the resistivity is normalised such that it is the inverse of the magnetic Reynolds 
number. This figure shows that the growth rates decrease with increasing resistivity. 
A possible explanation is a broadening of the perturbation because of the resistivity. 
Therefore, a wall stabilization is possible. 

o. o s r--

0.06 ,.---......._,,_,,.. 

'Y 

0.04 

0.02 

0.00 ~-9~~~~~~,~~~~~~,~~~~~~~.~.~~~~, 
10 1~ 1~ 10- 1~ 

lJ 

Figure 3.8: Growth rates of the two largest edge localized external modes as a function of the 
resistivity 17 at q1 = 9.41, {3p = 1.095, and rw = 1.025. 

In Fig. 3.9, we have plotted the three most unstable resistive internal instabilities 
for /Jp = 1.095, Qo = 2.8, Qmin = 1.87, and rw = 1.0. Both /I and /2 in figure 3.9 

scale as '7~ indicating the interchange character of these modes [2]. For ri = 10-6 the 
radial mode structure of these resistive interchange instabilities is shown in Fig. 3.10. 
The double mode resonant m = 2 behaviour around the q = 2 surfaces is clearly 
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Figure 3.9: Growth rates of the three largest resistive internal modes as a function of the resis
tivity TJ for qo = 2.8, Qmin = 1.87, /3p = 1.095, and rw = 1.0. Both ')'1 and /2 scale 
as 17! indicating the interchange character of these modes. For 1J = 10- 6 the mode 
structure of / 1 and 12 is plotted in Fig. 3.10. 
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Figure 3.10: :r-.Iode structure of the two most unstable internal resistive instabilities for (a) ')'1 and 
(b) 12 of Fig. 3.9 for 1J = 10- 6

. For both modes, the largest Fourier harmonics of 
the velocity component normal to the flux surfaces are plotted versus s = ,,fi{;. The 
safety factor profile is also sho,vn. 
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visible. Hence, for the considered equilibrium, these double resistive interchange 
modes are more important than the double tearing mode. Comparing Fig. 3.8 and 
3.9, one notes that the growth rate of the internal modes become dominant over the 
external ones for ry > 10-6• 

3.5 Shaping effects 

The effect of the plasma shape, i.e., the dependence of the growth rate on the 
triangularity and elongation, also has been investigated. This was done by varying 
one of these parameters while keeping the other input parameters fixed. 

Increasing the triangularity results in a higher average shear near the edge, i.e., 
a higher value of Qi - Qmin, and in a higher poloidal beta. Figure 3.11 shows the 
effect of the triangularity on the growth rate of the ideal n = -1 instability plotted 
versus Qi, while keeping the elongation fixed at 2.0. Furthermore, we fixed the 
wall at rw = 1.025. This figure shows that the growth rate increases with higher 
triangularity, but the width of the unstable Qi-window does not change significantly. 
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--y,, 0=0.75 
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Figure 3.11: Growth rate of the two largest n = -1 instabilities versus Q1 for three different values 
of the triangularity 0. The wall position rw = 1.025, the elongation K, = 2.0, and 
the HELENA input parameter B = 2.0. This corresponds to {3p = 1.107 for 0 = 0.9, 
{3p = 1.095 for b = 0.8, and {3p = 1.090 for b = 0.75. 
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Figure 3.12 shows the effect of the elongation on the growth rate of the ideal 
external n = -1 instability, while keeping the triangularity fixed at 0.8. Again, the 
wall was fixed at r w = 1.025. Like in the case of the triangularity, increasing the 
elongation results in a higher average shear near the edge. But now the poloidal 
beta decreases. As can be seen in Fig. 3.12, the growth rate increases with in
creasing elongation, but again the width of the unstable q1-window does not change 
significantly. 
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Figure 3.12: Gro\vth rate of the two largest n = -1 instabilities versus q1 for three different values 
of the elongation ""· The wall position rw = 1.025, the triangularity i5 = 2.0, and the 
HELENA input parameter B = 2.0. This corresponds to {3p = 1.075 for ,.., = 2.1, 
{3p = 1.095 for K = 0.8, and f3v = 1.115 for K = 1.9. 
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Chapter 4 

Con cl us ions 

In this report, the MHD stability analysis of the KSTAR tokamak is described. 
The analysis was performed by means of the equilibrium code HELENA, the law
n resistive MHD code CASTOR, and a new high-n ballooning stability code BSE. 
Since the KSTAR tokamak is intended to operate with a large non-inductively driven 
bootstrap current, we have studied equilibria with inverted q-profiles. 

For the ballooning study, we have used a typical averaged current density and 
pressure profile as obtained by the JETTO transport code in the modeling phase 
of profile control experiments. For the considered KSTAR geometry these profiles 
give rise to a q-profile characterized by high shear at the plasma edge. A ballooning 
optimization has been performed on the pressure profile. The equilibrium obtained 
is stable up to (3p = 1.8 and f3t = 6.3% for a total plasma current of 2.04 MA. 

It has been shown that the n = 1 ideal internal modes do not set a more severe 
limit on the poloidal beta. Since we exploit the ballooning optimized profiles which 
are characterized by low pressure gradients in the region of low positive shear, no 
infernal instabilities are found. 

The external modes limit the achievable poloidal beta considerably. They can 
only be stabilized by bringing an ideal conducting wall very close to the plasma 
edge. Typically, the distance of the wall to the plasma edge should be below 1 % of 
the minor plasma radius. Furthermore, the growth rate of these modes decreases 
w\th increasing resistivity and decreasing poloidal beta. In addition to these ex
ternal modes, we have found resistive internal instabilities. A detailed analysis of 
the mode structure and the scaling of the growth rate with the resistivity shows 
that these modes appear to be double resistive interchange instabilities. We have 
investigated the effect of shaping on the external instabilities. The growth rate of 
these instabilities increases with increasing triangularity and elongation. 

Finally, the current profile obtained by the JETTO transport code appearsto 
have a slightly too large current gradient at the edge of the plasma for stability of 
the KSTAR tokamak. Therefore, external modes with huge growth rates are found. 
Consequently, this kind of current profile should be avoided. A forthcoming paper 
will consider equilibria with lower current gradients at the edge. 

33 



34 



Appendix A 

Ballooning stability code BSE, 
user guide version 1. 3 

BSE (Ballooning Stable Equilibria) is a FORTRAN 90 program that determines 
whether or not an equilibrium constructed with HELENA [8, 13] is ballooning sta
ble. It makes use of PPPLIB (Plasma Physics Plotting LIBrary), HGOLIB (Hans 
GOedbloed LIBrary), and spline.a from the CASTOR code [9, 12]. The BSE pro
gram should be compiled with the command: 

f90 -o bse bse.f90 spline.o ppplib.a hgolib.a 

A.1 Input files 

BSE uses NAMELIST formatting to read in data from the input file 'input'. Three 
namelists are defined, viz. PARS, PROF, and QPAR. The parameters in namelist PARS 
determine the extended polodial interval, the resolution, and the Vi-interval that 
is considered for the ballooning a-stability test. The parameters in namelist PROF 

determine how the equilibrium is defined in HELENA [13]. Finally, namelist QPAR 
consists of q0 and a that can be used for rescaling the toroidal current [5]. 

N amelist PARS 

TO 

DBT, DBF 

DBT 

SIGMA 

value {) 0 for ballooning modes that are localized around iJo, 
see Eq. (2.11); 

truncated range of the extended poloidal variable for the Suy
dam method; 

mesh size 6.{) for the Suydam method; 

cut-off for the growth rate in the criterion for a-stability; 
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MHARM number of harmonics to be used to interpolate from the do
main 0 < {) < 27r to the extended domain; 

PSLSTART, PSL.END The range of flux surfaces to scan for ballooning stability 
{must be integer values). 

Namelist PROF 

A HELEN A ouput parameter [13] which is an eigenvalue of the Grad
Shafranov equation; 

B HELEN A input parameter determining the amplitude of the pressure 
profile; 

IGAM HELENA switch parameter determining whether the profile r{,,V) or 
F(,,V)F'(,,V) is used and how this profile is specified: 

1 - r(,p) given as a 8th order polymonial with coefficients AGA, BGA, 
... , HGA, i.e., f{,,V) = 1 +a'Y,,V+ ... +h'Y,µs, 

2 - not implemented, 

3 - not implemented, 

4 - r{s) read in via namelist input DF2 on an equidistant s = y'i/i-mesh, 

5 - F(,,V)F'(,,V) given as a 8th order polymonial with coefficients AGA, 
BGA, ... , HGA, i.e., F(,,V)F'(,,V) = 1 + a'Y,,V + · · · + h'Y,,V8

, 

6 - not implemented, 

7 - F(s)F'(s) read in via namelist input DF2 on an equidistant s = v'ili
mesh, 

8 - not implemented; 

AG A-HG A coefficients a'Y, ... , h'Y of the 8th order polynamial r( 1,6) for the case IGAM 
= 1, and of F(,,V)F'(,,V) for the case IGAM = 5; 

IPAI HELENA switch parameter determining how the profile II(,,V) is specified 
(analogous to IGAM): 

1 - II(,,V) given as a 8th order polymonial with coefficients API, BPI, 
... , HPI, i.e., II(,,V) = 1 + a,,,V + · · · + h,,ps, 

2 - not implemented, 

3 - not implemented, 

4 - as IPAI 1, 

5 - as IPAI = 1, 

6 - P' ( s) read in via namelist input DPR on an equidistant s y'i/i-
mesh, 
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7 - not implemented; 

API-HPI coefficients a,,, ... , h,, of the 8th order polynamial IT(,P) for the case IGAM 
= 1, 4, and 5; 

NPTS number of points on which the input profiles DF2 (IGAM 4 and 7) and 
DPR (IPA! = 7) are given; 

DF2 array of dimension NPTS on an equidistant mesh s = ,/1/i defining the 
input profile for f(s) in the case IGAM = 4, and for F(s)F'(s) in the case 
IGAM = 7; 

DPR array of dimension NPTS on an equidistant mesh s = ,/1jj defining the 
input profile for P'(s) in the case !PAI = 7. 

N amelist QPAR 

QO_llELENA HELENA value of the safety factor on axis (qo); 

QO_START, QO_END range of qo-values to scan; 

NQO number of qo-values; 

ALFA HELENA input parameter a. 

A.2 Mapping file 

BSE needs a mapping file to read in the equilibrium. This file is created by HE
LENA [13], and must be copied to the BSE home directory as file 'mapping'. 

A.3 Output 

The BSE output is generated on the standard output. The printed list contains for 
every value qo of the q0 scan the following information: 

• the new values of qo, qmin, q1, and the new HELENA a; 

• the flux-surface number IS that is evaluated; 

• the corresponding ,P-value; 

• the value of -D1, where -D1 > 0 is the Mercier criterion; 

• 'ballooning stable' or 'unstable', and, in case of instability, the value of{) where 
a becomes negative. 
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A.4 A remark on using BSE 

For profile optimization, we recommend that HELENA should be used without mesh 
accumulation since the input profiles DPR and DF2 are defined on an equidistant 
mesh in s = ,/if). 
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