CO$_2$-Neutral Fuels

Adelbert Goede

Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden
CO₂ Neutral fuels: What are they?

Hydrocarbons synthesised from water and air
- powered by Renewable Electricity
- CO₂ recirculated after use

Characterised by high energy density and existing infrastructure
Carbon neutral fuel cycle: P2X – CCU

Point source capture of fossil CO₂
→ not climate neutral, emission delayed

Direct air capture of CO₂
→ climate neutral fuel cycle

Power-to-X
\(X = \text{gas or liquid fuel or chemicals} \)

P2X + CCU
CCU: carbon capture and utilisation

P2X is most critical part both technically and economically

Technology benchmark: costs of H₂
- Electrolysis >6 €/kg H₂ (fossil fuel <1 €/kg H₂)
- CO₂ capture: point source 40 €/tonne, direct air 400 €/tonne
Splitting H_2O and/or CO_2 by electrolysis

- **Alkaline** electrolyte (100 yrs large scale mature technology)
 - Power density low (< 0.5W/cm2)
 - Low hydrogen output pressure (< 30bar)
 - Safety (caustic electrolyte)

- **PEM** (polymer electrolyte membrane), pre-commercial
 - Power density \sim1W/cm2
 - Rapid dynamic response
 - Degradation membrane
 - Catalyst material Pt, Ir (Scarce)
 - MW unit (Siemens)

- **SOEC** (solid-oxide electrolyser cell)
 - High power density, energy efficiency, output pressure
 - High Temperature operation (800°C and pressure 50-100 bar)
 - Co-electrolysis H_2O and CO_2
 - Degradation under high current density operation
Mission: Basic scientific research into Fusion Energy and Solar Fuels, Based on in house high-quality technical infrastructure, collaboration with Academia, National Research Organisations and Industry, building a national community in energy research.

Relocated mid 2015
University Campus Eindhoven
Why plasma for CO$_2$ conversion?

Characteristics of CO$_2$ plasmolysis

Ease conditions for CO$_2$ splitting by channelling energy in molecular vibration to break chemical bond, not to heat the gas (non-equilibrium)

- Energy efficiency comparable to Electrolysis (~60% demonstrated)
- High productivity: large gas flow and power flow density (45W/cm2)
- Fast dynamic response to intermittent power supply
- No scarce materials employed (Pt catalyst in PEM)
Chemical reaction scheme

\[
\begin{align*}
\text{CO}_2 & \rightarrow \text{CO} + \text{O} \quad (\Delta H=5.5 \text{ eV}) \\
\text{CO}_2 + \text{O} & \rightarrow \text{CO} + \text{O}_2 \quad (\Delta H=0.3 \text{ eV}) \\
\text{Net} & \\
\text{CO}_2 & \rightarrow \text{CO} + \frac{1}{2} \text{O}_2 \quad (\Delta H=2.9 \text{ eV})
\end{align*}
\]

Efficiency to be increased by

Concentration of electron energy on vibrational excitation of \(\text{CO}_2 \) in asymmetric stretch mode

Arrhenius/Fridman:

Activation energy reduced by vibration energy

\[
k = A \exp \left(\frac{\alpha E_v - E_a}{kT} \right)
\]
Experimental Results

- CO and O₂ production as function RF Power

![Graphs showing CO and O₂ production as function of RF Power](image-url)
Experimental Results

• CO production as function **Gas flow**

![Graph showing CO production as function of gas flow](image)

- 10 kW RF absorbed
- 75 slm CO2, conversion 10% CO (non optimised for safety risk)
- Pressure 500 mbar,
- Energy Efficiency 30%
Experimental Results

Energy efficiency vs. reduced E-field

- Type I
- Type II
- Type III

$\eta [\%]$

$E/n [10^{-16} \text{ V cm}^2]$
Experimental Results

particle conversion vs. reduced E-field

E/n [10^{-16} V cm^2]
Energy efficiency of CO$_2$ plasma conversion

Fridman Energy efficiencies:
- Microwave: ◇
- supersonic: ▲
- Radiofrequency (RF): CCP: △, ICP: ▲

DIFFER & IPF Energy efficiencies:
- High CO$_2$ flow (75 slm): ★
- Low CO$_2$ flow (11 slm): ★

Conversion efficiencies:

![Graph showing energy efficiency vs. specific energy input](image)
O₂ separation from CO (similar sized)

- MIEC mixed ion electron conductive membrane (pressure driven) BSCF (Ba₀.₅ Sr₀.₅ Co₀.₈ Fe₀.₂ O₃-d) has been shown to produce an O₂ flux of 60-80 ml/cm² per min.
- Electro chemical Oxygen pump (Voltage driven) YSZ (Yttrium stabilized Zirconia).
Separation of CO, O₂, CO₂ mixture

YSZ Oxygen selective membrane to separate O₂ from CO, CO₂ mixture
Hairpin shaped membranes fitted into SS assembly
From H$_2$O and CO$_2$ to sustainable hydrocarbons

sustainable energy

CO$_2$ hydrogenation
- methane (Sabatier), methanol synthesis

CO$_2$ splitting reactions
- H$_2$O \rightarrow H$_2$ + $\frac{1}{2}$ O$_2$ (splitting reactions)
- CO$_2$ \rightarrow CO + $\frac{1}{2}$ O$_2$

CO$_2$ water-gas shift reaction
- H$_2$O + CO \rightarrow H$_2$ + CO$_2$

Syngas-to-fuel chemistry
- methane, methanol, Fischer-Tropsch fuels (higher alkanes), etc

reaction enthalpies calculated for gaseous products at standard conditions
Conclusions

- P2X provides vast seasonal energy storage capacity and flexibility of supply from Renewables
- P2X-CCU enables a CO$_2$ neutral fuel cycle based on hydro-carbons and existing infrastructure
- Technical challenge: innovation in CO$_2$ splitting and CO-O$_2$ separation
- Economic challenge: cost reduction, government regulation, business case expected to emerge around 2030, cost of CO$_2$ to reach € 200/tonne