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Chapter 2: Elements of plasma physics
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Three theoretical models:

• Theory of motion of single charged particles in given magnetic and electric fields;
[ book: Sec. 2.2 ]

• Kinetic theory of a collection of such particles, describing plasmas microscopi-
cally by means of particle distribution functions fe,i(r,v, t) ; [ book: Sec. 2.3 ]

• Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged
macroscopic functions of r and t . [ book: Sec. 2.4 ]

Within each of these descriptions, we will give an example illustrating the plasma property
relevant for our subject, viz. plasma confinement by magnetic fields.
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Equation of motion

of charged particle in given electric and magnetic field, E(r, t) and B(r, t):

m
dv

dt
= q(E + v × B) . (1)

• Apply to constant magnetic field B = Bez , E = 0 :

(a) projection on B gives m
dv‖
dt = 0 ⇒ v‖ = const ,

(b) projection on v gives d
dt

(1
2mv2) = 0 ⇒ v⊥ = const.

• Systematic solution of Eq. (1) with v = dr/dt = (ẋ, ẏ, ż) gives two coupled differ-
ential equations for motion in the perpendicular plane:

ẍ − (qB/m) ẏ = 0 ,
(2)

ÿ + (qB/m) ẋ = 0 .

⇒ periodic motion about a fixed point x = xc, y = yc (the guiding centre).
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Cyclotron motion

This yields periodic motion in a magnetic
field, with gyro- (cyclotron) frequency

Ω ≡ |q|B
m

(3)

and cyclotron (gyro-)radius

R ≡ v⊥
Ω

≈
√

2mkT

|q|B . (4)

B

 

R i

+

R e--

⇒ Effectively, charged particles stick to the field lines.

Opposite motion of electrons and ions about guiding centres with quite different gyro-
frequencies and radii, since me ≪ mi :

Ωe ≡
eB

me
≫ Ωi ≡

ZeB

mi
, Re ≈

√
2mekT

eB
≪ Ri ≈

√
2mikT

ZeB
. (5)

In inhomogeneous fields, these guiding centres drift!
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Cyclotron motion (cont’d)

Orders of magnitude

• Typical gyro-frequencies, e.g. for tokamak plasma (B = 3 T):

Ωe = 5.3 × 1011 rad s−1 ( frequency of 84 GHz ) ,

Ωi = 2.9 × 108 rad s−1 ( frequency of 46 MHz ) .

• Gyro-radii, with v⊥ = vth ≡
√

2kT/m for Te = Ti = 1.16 × 108 K :

vth,e = 5.9 × 107 m s−1 ⇒ Re = 1.1 × 10−4 m ≈ 0.1 mm ,

vth,i = 1.4 × 106 m s−1 ⇒ Ri = 4.9 × 10−3 m ≈ 5 mm .

⇒ Tokamak time scales (∼ 1 s) and dimensions (∼ 1 m) justify averaging.

Since the gyro-frequencies essentially depend on B alone

⇒ excellent diagnostic to determine the magnetic field strength!
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Relativistic particle motion

• Equation of motion now reads

dp

dt
= q(E + v × B) , p = γmv (≈ mv for v ≪ c ) , (6)

with relativistic momentum p, rest mass m and Lorentz factor γ ≡ (1 − v2/c2)−1/2.

• For motion in constant B ,
dp

dt
=

q

γm
p × B ,

project onto B and p ⇒ p‖ = const and |p| = const ⇒ v = const , γ = const .

• Relativistic gyro-frequency and gyro-radius:

Ω =
|q|B
γm

, R =
p⊥
|q|B =

v⊥
Ω

. (7)

• The ratio p⊥/|q| = RB = γmv⊥/|q| depends on particle properties only

⇒ called magnetic rigidity ( large for large R, i.e. little deflection by B ),

⇒ useful measure for cosmic ray particle energies.
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Drifts

• Single particle motion in constant E (= Eey) ⊥ constant B (= Bez) .

• Transverse equations of motion:

ẍ − qB

m
ẏ = 0 ,

(8)

ÿ +
qB

m
(ẋ − E/B) = 0 ,

replacing ẋ → ẋ − E/B ⇒ gyration superposed with constant drift in x-direction.

• Hence, ⊥ electric field gives E × B drift :

vd =
E × B

B2
, (9)

independent of the charge, so that elec-
trons and ions drift in the same direction!

E

(y)

B

(z)

vd

(x)

+

--
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Drifts (cont’d)

• Reason: periodic acceleration / deceleration of moving charge in electric field E .

• Lorentz transformation to a frame moving with vd yields:

E′ = γ(E + v × B) = 0

⇒ particles move to ensure vanishing of the electric field in the moving frame !

• Replace qE by any other force F :

vd =
F × B

qB2

⇒ drift velocity now q-dependent: electrons and ions drift in opposite directions

⇒ electric current flow.

• Other drifts (all due to periodic changes of the gyro-radius)

⇒ through gradients of the magnetic field: B ×∇B drift ,

⇒ through field line curvature (centrifugal force).
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Mirror effect

• Particles entering region
of higher |B| are reflected
back into region of smaller
|B| where gyro-radius is
larger and v⊥ smaller ⇒
(a) mirror, (b) cusp.

coil

B

I

a b

coil

I

coil

I

coil

I

• Both confinement schemes have been dropped in thermonuclear fusion research
(because of interchange instabilities and leakage through the ends), but the mirror
remains important concept to explain trapping of particles (e.g. van Allen belts).

• Also, important for the systematic theory of fast periodic particle motion in the slow
variation of inhomogeneous magnetic fields ⇒ adiabatic invariants.

For example, the reflection of charged particle spiraling into higher field regions of
the mirror is described by an adiabatic invariant ∼ v⊥R, with R ∼ v⊥/B.
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Adiabatic invariants

• Allow systematic treatment of periodic motion in inhomogeneous magnetic fields,
typically assuming scale gyro-motion ≪ scale of inhomogeneities of B .

• Define ‘action variables’ J ≡
∮

P dQ with periodic coordinate Q and generalised
momentum P ≡ mv + qA, where A is the vector potential ( B = ∇× A ).

⇒ First invariant (for rapid gyro-motion, the magnetic moment µ is constant):

J1 ≡
∮

P⊥ · dl =
πmv2

⊥
Ω

=
2πm

q
µ , µ ≡ πR2I . (10)

⇒ Second invariant (constant for bouncing of particles trapped between mirrors):

J2 ≡
∮

P‖ dl ≈
∮

mvz dz =
πmv̂2

z

ωb
. (11)

⇒ Third invariant (constant for slow drift of the guiding centers across the field lines;
enclosed flux Ψd is also constant):

J3 ≡
∮

Pφ rdφ ≈ 2πq rAφ = q Ψd , Ψd = 2π

∫ r

r0

Bzr dr . (12)



Elements of plasma physics: Single particle motion (9) 2-10
�

�

�


Application to mirror

• Exploit constancy of J1 (∼ µ = 1
2mv2

⊥/B ) to analyse motion into mirror field:

v⊥ increases with B ⇒ v‖ decreases (energy conservation) ⇒ reflection.

• Not all particles are reflected: particles for small enough v⊥/v‖ are lost.

a

v⊥

v ||

b

ϑm

v0
vm

 ϑ

B0

Bm 

Transition trapped–untrapped from energy conservation and adiabatic invariant:

v2
‖,0 + v2

⊥,0 = v2
⊥,m

v2
⊥,0/B0 = v2

⊥,m/Bm

}
⇒ loss cone : ϑ < ϑm ≡ arctg

√
B0

Bm − B0
.
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Application to magnetosphere

Example: Charged particles in
the magnetosphere.

J1 : gyration

N

S

z

B

r

φ

J3 : drift

W

E

J2 : bouncing

i

e

(a) Electrons and ions rapidly gyrate about the magnetic field, conserving J1;

(b) The guiding centres bounce back and forth between the mirrors on the northern and
southern hemisphere on a slower time scale, conserving J2;

(c) They drift in opposite longitudinal directions on a slower time scale yet, conserving
J3 (magnetic flux inside the drift shell): This invariance is easily invalidated by the
fluctuating interaction of the solar wind with the magnetosphere.



Elements of plasma physics: Kinetic theory (1) 2-12

�

�

�


Distribution functions

• A plasma consists of a very large number of interacting charged particles ⇒ kinetic
plasma theory derives the equations describing the collective behavior of the many
charged particles by applying the methods of statistical mechanics.

• The physical information of a plasma consisting of electrons and ions is expressed in
terms of distribution functions fα(r,v, t), where α = e, i. They represent the density
of particles of type α in the phase space of position and velocity coordinates. The
probable number of particles α in the 6D volume element centered at (r,v) is given
by fα(r,v, t) d3r d3v. The motion of the swarm of phase space points is described
by the total time derivative of fα:

dfα

dt
≡ ∂fα

∂t
+

∂fα

∂r
· dr

dt
+

∂fα

∂v
· dv

dt

=
∂fα

∂t
+ v · ∂fα

∂r
+

qα

mα
(E + v × B) · ∂fα

∂v
. (13)
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Boltzmann equation

• Interactions (collisions) between the particles determine this time derivative:

∂fα

∂t
+ v · ∂fα

∂r
+

qα

mα
(E + v × B) · ∂fα

∂v
= Cα ≡

(
∂fα

∂t

)

coll

. (14)

• Here, E(r, t) and B(r, t) are the sum of the external fields and the averaged internal
fields due to the long-range inter-particle interactions. Cα represents the rate of
change of the distribution function due to the short-range inter-particle collisions.
In a plasma, these are the cumulative effect of many small-angle velocity changes
effectively resulting in large-angle scattering. The first task of kinetic theory is to
justify this distinction between long-range interactions and binary collisions, and to
derive expressions for the collision term.

• One such expression is the Landau collision integral (1936). Neglect of the collisions
(surprisingly often justified!) leads to the Vlasov equation (1938).
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Completing the system

• Combine the Boltzmann equation, determining fα(r,v, t) , with Maxwell’s equations,
determining E(r, t) and B(r, t). In the latter, charge density τ (r, t) and current
density j(r, t) appear as source terms. They are related to the particle densities
nα(r, t) and the average velocities uα(r, t):

τ (r, t) ≡
∑

qαnα , nα(r, t) ≡
∫

fα(r,v, t) d3v , (15)

j(r, t) ≡
∑

qαnαuα , uα(r, t) ≡ 1

nα(r, t)

∫
vfα(r,v, t) d3v. (16)

This completes the microscopic equations.

• Solving such kinetic equations in seven dimensions (with the details of the single
particle motions entering the collision integrals!) is a formidable problem
⇒ look for macroscopic reduction!
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Moment reduction

• Systematic procedure to obtain macroscopic equations, no longer involving velocity
space details, is to expand in finite number of moments of the Boltzmann equation,
by multiplying with powers of v and integrating over velocity space:

∫
d3v · · · ,

∫
d3v v · · · ,

∫
d3v v2 · · · |truncate . (17)

• E.g., the zeroth moment of the Boltzmann equation contains the terms:
∫

∂fα

∂t
d3v =

∂nα

∂t
,

∫
v · ∂fα

∂r
d3v = ∇ · (nαuα) ,

∫
qα

mα
(E + v × B) · ∂fα

∂v
d3v = 0 ,

∫
Cα d3v = 0 .

Adding them yields the continuity equation for particles of species α:

∂nα

∂t
+ ∇ · (nαuα) = 0 . (18)
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Moment reduction (cont’d)

• The first moment of the Boltzmann equation yields the momentum equation:

∂

∂t
(nαmαuα) +∇ · (nαmα〈vv〉α)− qαnα(E + uα ×B) =

∫
Cαβ mαv d3v . (19)

• The scalar second moment of Boltzmann Eq. yields the energy equation:

∂

∂t
(nα

1
2
mα〈v2〉α) + ∇ · (nα

1
2
mα〈v2v〉α) − qαnαE · uα =

∫
Cαβ

1
2
mαv

2 d3v . (20)

• This chain of moment equations can be continued indefinitely. Each moment intro-
duces a new unknown whose temporal evolution is described by the next moment of
the Boltzmann equation. The infinite chain must be truncated to be useful. In fluid
theories truncation is just after the above five moments: continuity (scalar), momen-
tum (vector), and energy equation (scalar).

How to justify?
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Thermal fluctuations

• Split the particle velocity v in an average part uα and a fluctuating part ṽα:

ṽα ≡ v − uα , where 〈ṽα〉 = 0 . (21)

This permits the definition of thermal quantities:

Tα(r, t) ≡ mα

3k
〈ṽ2

α〉 , pα ≡ nαkTα , (temperature, pressure) (22)

Pα(r, t) ≡ nαmα 〈ṽαṽα〉 = pαI + πα , (stress tensor) (23)

hα(r, t) ≡ 1
2nαmα 〈ṽ2

αṽα〉 , (heat flow) (24)

Rα(r, t) ≡ mα

∫
Cαβ ṽα d3v , (momentum transfer) (25)

Qα(r, t) ≡ 1
2
mα

∫
Cαβ ṽ2

α d3v . (heat transfer) (26)

Progress by hiding the problems in abbreviations of intricate kinetic processes?

Additional information is needed about the variables πα, hα, Rα, Qα to express them
in terms of the macroscopic variables nα, uα, Tα to close the set!
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Maxwell–Boltzmann distribution

• Velocity distribution function for thermal equilibrium :

f 0
α(r,v, t) = nα

( mα

2πkTα

)3/2
exp

(
−mαṽ

2
α

2kTα

)
. (27)

⇒ LHS Boltzmann equation (14) vanishes ⇒
(
∂fα
∂t

)
coll

= 0 .

⇒ solution consistent with definitions of Tα , etc.

• For plasma with two species α = e, i

⇒ each species has Maxwellian velocity distribution,

⇒ full equilibrium only when ue = ui and Te = Ti .

• Plasma kinetic theory

⇒ deals with deviations from this thermal equilibrium

⇒ and the way in which collisions cause relaxation to thermal equilibrium.
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Closure

• Equations of continuity, momentum, and heat balance take the form:

∂nα

∂t
+ ∇ · (nαuα) = 0 , (28)

nαmα (
∂uα

∂t
+ uα · ∇uα) + ∇ · Pα − nαqα(E + uα × B) = Rα, (29)

3
2nαk (

∂Tα

∂t
+ uα · ∇Tα) + Pα : ∇uα + ∇ · hα = Qα . (30)

• The truncated set of moment equations is closed by exploiting the transport co-
efficients (derived from transport theory) between the thermal quantities and the
gradients of the macroscopic variables. Schematically:

πα ∼ µα∇uα (viscosity),

hα ∼ −κα∇(kTα) (heat conductivity), (31)

Rα ≈ −qαnαη j ,
∑

Qα ≈ η |j|2 (resistivity).

Deriving these coefficients is the second (formidabale) task of kinetic theory.
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Collective phenomena: Plasma oscillations

• Extend concepts of quasi-neutrality and Debye length in two steps:

(a) Perturbations of quasi-neutrality by plasma oscillations

⇒ application of moment equations, 1) neglecting Pα, hα, Rα, Qα (cold),

2) keeping pα = nαkTα (finite pressure).

(b) Thermal effects on Debye length scale through Landau damping

⇒ application of kinetic equations.

• Cold plasma oscillations described by continuity equation (28):

∂nα

∂t
+ ∇ · (nαuα) = 0 (α = e, i) , (32)

simplified (B = 0) momentum equation (29):

mα

(∂uα

∂t
+ uα · ∇uα

)
= qα E (α = e, i) , (33)

and E from Poisson’s equation with charge density (15):

∇ · E =
τ

ǫ0
=

e

ǫ0
(Zni − ne) . (34)
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(Cold) Plasma oscillations

• Simplify further:

mi ≫ me : ions immobile (ui ≈ 0), approx. charge balance (ni ≈ n0/Z),

small charge imbalances by slightly displacing the electrons:

ne ≈ n0 + n1(r, t) , ue ≈ u1(r, t) . (35)

• Yields linearized equations for the electron variables:

∂n1

∂t
+ n0∇ · u1 = 0 ,

me
∂u1

∂t
= −eE1 , (36)

∇ · E1 =
τ1

ǫ0
= − e

ǫ0
n1 .

• May be reduced to a single wave equation for n1:

∂2n1

∂t2
= −n0∇ · ∂u1

∂t
=

n0e

me
∇ · E1 = −n0e

2

ǫ0me
n1 . (37)
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Plasma frequency and Debye length

• Solutions n1(r, t) = n̂1(r) exp(−iωt) represent electron density oscillations, called
plasma oscillations, with a characteristic frequency, called the plasma frequency :

ω = ±ωpe , ωpe ≡
√

n0e2

ǫ0me
. (38)

For tokamak (n0 = 1020 m−3): ωpe = 5.7 × 1011 rad s−1 (i.e. 91 GHz) ,
which is of the same order of magnitude as Ωe for strong magnetic field (B ∼ 3 T).

• Note: the spatial form of n̂1(r) is not determined in cold plasma theory. This becomes
different for “warm” plasmas, where deviations from charge neutrality due to thermal
fluctuations occur in small regions of a size of the order of the Debye length

λD ≡
√

ǫ0kBTe

n0e2
=

vth,e√
2 ωpe

. (39)

For thermonuclear plasma ( T̃ = 10 keV): λD = 7.4 × 10−5 m ≈ 0.07 mm ,
i.e. of the order of the electron gyro-radius Re.
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(Finite pressure) Plasma oscillations

• Finite pressure plasma oscillations described by:

∂n1

∂t
+ n0∇ · u1 = 0 , (40)

n0me
∂u1

∂t
+ ∇p1 = −en0E1 , (41)

∂p1

∂t
+ γp0∇ · u1 = 0 , (42)

∇ · E1 = − e

ǫ0
n1 . (43)

• Assuming plane waves n1(x, t) = n̂1 exp i(kx − ωt), and similarly for u1, p1, E1, the
gradients ∇ → i kex and the time derivatives ∂/∂t → −i ω, so that Eqs. (40)–(43)
become an algebraic system of equations for the amplitudes n̂1, û1, p̂1, and Ê1. The
determinant provides the dispersion equation:

ω2 = ω2
pe(1 + γk2λ2

D) . (44)

However, this thermal correction of the dependence of ω on k turns out to be incom-
plete (misses the damping obtained in the proper kinetic derivation).
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Collective phenomena: Landau damping

• A more refined analysis of plasma oscillations for “warm” plasmas takes into account
velocity space effects, exploiting the Vlasov (or collisionless Boltzmann) equation for
the perturbations f1(r,v, t) of the electron distribution function. With plane wave
solutions ∼ exp i(k · r − ωt), one runs into a mathematical problem:

∂f1

∂t
+ v · ∂f1

∂r
= −i(ω − k · v) f1 =

e

me
E1 ·

∂f0

∂v
, (45)

To express f1 in terms of E1 one needs to invert the operator ∂/∂t + v · ∂/∂r,
which is singular for every ω − k · v = 0 . Incorporated in a proper treatment of
the initial value problem, these singularities were shown by Landau (1946) to give
rise to damping of the plasma oscillations. This Landau damping is a surprising
phenomenon since it occurs in a purely collisionless medium: there is no dissipation!

• An alternative, normal mode, analysis was given by Van Kampen (1955). He showed
that the singularities ω − k · v = 0 lead to a continuous spectrum of singular modes
which constitute a complete set of ‘improper’ eigenmodes for this system. Damping
occurs because a package of those modes rapidly looses its spatial phase coherence
(phase mixing). [ Continuous spectra also occur in MHD (as we will see later)! ]
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‘Dispersion equation’ (Vlasov)

• 1D Vlasov–Poisson problem:

∂f1

∂t
+ v

∂f1

∂x
=

e

me

∂f0

∂v
E1 ,

∂E1

∂x
= − e

ǫ0
n1 = − e

ǫ0

∫ ∞

−∞
f1 dv . (46)

leads to

− i(ω − kv) f̂1 =
e

me

∂f0

∂v
Ê1 , i kÊ1 = − e

ǫ0

∫ ∞

−∞
f̂1 dv . (47)

• For ω 6= kv, this would give
[

1 −
ω2

pe

k2n0

∫ ∞

−∞

1

v − ω/k

∂f0

∂v
dv

]
Ê1 = 0 , (48)

where vanishing of the square bracket would provide the dispersion equation.

• The singularity ω = kv was treated in a cavalier manner by Vlasov by exploiting the
principal value of the integral for real ω. This reproduced the fluid expression (44)
(with γ = 3). However, there is no justification for this procedure.
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Landau’s result

• Obviously, assumption ω 6= kv can-
not be justified if frequency ω of the
plane waves is real since integra-
tion is then right accross the singu-
larity. This singularity occurs for par-
ticles with speeds that are resonant
with the phase velocity of the waves:
v = vph ≡ ω/k (vertical line).

v

f 0 

v ph

• Landau’s careful analysis of the singularity revealed that there is an imaginary con-
tribution (the Landau damping) to the frequency of the waves:

ω ≈ ωpe{1 + 3
2
k2λ2

D − i
√

π
8
(kλD)−3 exp [ − 1

2
(kλD)−2 − 3

2
]} , (49)

• For short wavelengths (kλD ∼ 1), the damping becomes so strong that wave motion
with wavelengths smaller than the Debye length becomes impossible.
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From kinetic theory to fluid description

• (a) Collisionality: Lowest moments of Boltzmann equation with transport closure
gives system of two-fluid equations in terms of the ten variables ne,i, ue,i, Te,i. To
establish the two fluids, the electrons and ions must undergo frequent collisions:

τH ≫ τi [ ≫ τe ] . (50)

• (b) Macroscopic scales: Since the two-fluid equations still involve small length and
time scales (λD, Re,i, ω−1

pe , Ω−1
e,i ), the essential step towards the MHD description is

to consider large length and time scales:

λMHD ∼ a ≫ Ri , τMHD ∼ a/vA ≫ Ω−1
i . (51)

The larger the magnetic field strength, the more easy these conditions are satisfied.
On these scales, the plasma is considered as a single conducting fluid .

• (c) Ideal fluids: Third step is to consider plasma dynamics on time scales faster
than the slow dissipation causing the resistive decay of the magnetic field:

τMHD ≪ τR ∼ a2/η . (52)

This condition is well satisfied for the small size of fusion machines, and very easily
for the sizes of astrophysical plasmas ⇒ model of ideal MHD.
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In summary:

Kinetic theory

⇓
frequent collisions

⇓

Two-fluid theory

⇓
large scales

⇓

Diss. MHD ⇒ slow dissipation ⇒ Ideal MHD
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Resistive two-fluid equations

• Plasma consists of electrons, qe = −e , and one kind of ions, qi = Ze ;

• Neglect most of the dissipative terms:

πe,i → 0 , he,i → 0 ; (neglect of viscosity and heat flow) (53)

• Keep momentum transfer and generated heat associated with resistivity:

Re = −Ri ≈ eneη j , Qe + Qi = −(ue − ui) · Re ≈ η|j|2 . (resistivity) (54)

⇒ Resistive two-fluid equations (with α = e, i):

∂nα

∂t
+ ∇ · (nαuα) = 0 , (55)

nαmα (
∂uα

∂t
+ uα · ∇uα) + ∇pα − nαqα(E + uα × B) = Rα , (56)

∂pα

∂t
+ uα · ∇pα + γpα∇ · uα = (γ − 1)Qα . (57)

This set is completed by adding Maxwell’s equations.
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Resistive MHD equations

• Define one-fluid variables that are linear combinations of the two-fluid variables:

ρ ≡ neme + nimi , (total mass density) (58)
τ ≡ −e (ne − Zni) , (charge density) (59)
v ≡ (nemeue + nimiui)/ρ , (center of mass velocity) (60)
j ≡ −e (neue − Zniui) , (current density) (61)
p ≡ pe + pi . (pressure) (62)

• Operate on pairs of the two-fluid equations (55)–(57):

me (55)e + mi (55)i ⇒ ∂ρ/∂t , − e (55)e + Ze (55)i ⇒ ∂τ/∂t ,

(56)e + (56)i ⇒ ∂v/∂t , − e

me
(56)e +

Ze

mi
(56)i ⇒ ∂j/∂t ,

(57)e + (57)i ⇒ ∂p/∂t , assume T = Te = Ti .

• Evolution expressions for τ and j disappear by exploiting:

|ne − Zni| ≪ ne , (quasi charge-neutrality) (63)
|ui − ue| ≪ v , (small relative velocity of ions & electrons) (64)
v ≪ c . (non-relativistic speeds) (65)
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Resistive MHD equations (cont’d)

Combining one-fluid moment equations thus obtained with pre-Maxwell equations (drop-
ping displacement current and Poisson’s equation) results in resistive MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (continuity) (66)

ρ (
∂v

∂t
+ v · ∇v) + ∇p − j × B = 0 , (momentum) (67)

∂p

∂t
+ v · ∇p + γp∇ · v = (γ − 1)η|j|2 , (internal energy) (68)

∂B

∂t
+ ∇× E = 0 , (Faraday) (69)

where

j = µ−1
0 ∇× B , (Ampère) (70)

E′ ≡ E + v × B = η j , (Ohm) (71)

and
∇ · B = 0 (no magnetic monopoles) (72)

is initial condition on Faraday’s law.
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Ideal MHD equations

• Substitution of j and E in Faraday’s law yields the induction equation:

∂B

∂t
= ∇× (v × B) − µ−1

0 ∇× (η∇× B) , (73)

where the resistive diffusion term is negligible when the magnetic Reynolds number

Rm ≡ µ0l0v0

η
≫ 1 . (74)

• Neglect of resistivity and substitution of j and E leads to the ideal MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (75)

ρ (
∂v

∂t
+ v · ∇v) + ∇p − µ−1

0 (∇× B) × B = 0 , (76)

∂p

∂t
+ v · ∇p + γp∇ · v = 0 , (77)

∂B

∂t
−∇× (v × B) = 0 , ∇ · B = 0 , (78)

which will occupy us for most of this course.
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Application: Alfvén waves

• Wave propagation in homogeneous plasma with magnetic field in z-direction:

ρ0 = const , v0 = 0 , p0 = const , B0 = B0 ez (⇒ j0 = 0 ) . (79)

• Small perturbations ρ1, v1, p1, B1 from this state permit to linearize Eqs. (75)–(78):

∂ρ1

∂t
= −ρ0∇ · v1 , (80)

ρ0
∂v1

∂t
= −∇p1 + µ−1

0 (∇× B1) × B0 , (81)

∂p1

∂t
= −γp0∇ · v1 , (82)

∂B1

∂t
= ∇× (v1 × B0) , (83)

producing a complete set of equations for the unknowns ρ1, v1, p1, and B1 .

• Neglecting the pressure, we obtain a wave equation for the velocity v1 :

ρ0
∂2v1

∂t2
= µ−1

0 (∇× ∂B1

∂t
) × B0 = µ−1

0 B0 × (∇× (∇× (B0 × v1))) . (84)
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Application: Alfvén waves (cont’d)

• Plane wave solutions v1(r, t) = v̂ei(k·r−ωt) (replacing ∂/∂t → −i ω , ∇ → ik )
yields eigenvalue equation

− ρ0ω
2 v̂ = −µ−1

0 B2
0 ez × (k × (k × (ez × v̂))) . (85)

• ⇒ v̂‖ = 0 , two remaining components v̂⊥ oscillate independently. Focus on wave
with velocity perpendicular to both k and B0 . Eigenvalue problem becomes:

(ω2 − k2
‖v

2
A) v̂y = 0 , vA ≡ B0√

µ0ρ0
(Alfvén velocity) . (86)

• Hence, two Alfvén waves (1942)
(right/left) with frequency

ω = ±ωA , ωA ≡ k‖vA . (87)

Tokamak example:

vA ≈ 6 × 106 m s−1 ,

τ = 2πR/vA ≈ 3 µ s .

x

z

k

y

B0

v1
+B0 B1
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Application: Equilibrium

• Static equilibrium basis of all magnetic confinement systems for fusion experiments:

∇p = j × B , j = µ−1
0 ∇× B , ∇ · B = 0 . (88)

• Example of z-pinch:

dp

dr
= −jzBθ , jz =

1

µ0r

d

dr
(rBθ) ⇒ dp

dr
= − Bθ

µ0r

d

dr
(rBθ) . (89)

A
A
A
A

a b0
r

j z 

a b
r

0 A
A
A
A

B θ
p

r
a b

0 A
A
A
A

• Numbers:

n = 1022 m−3, T = 108 K , a = 0.1 m ⇒ pc = 1.38 × 107 N m−2 (= 136 atm !) ,

Iz = 2πa(pc/µ0)
1/2 = 2.1 × 106 A , Bθ = µ0Iz/(2πa) = 4.2 T (= 42 kgauss) .

A thermonuclear reactor by just passing a current through a linear plasma column?
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Application: instability

• Alfvén waves in homogeneous plasma with straight magnetic field lines are stable.
Field lines of the z-pinch are curved. As a result some “Alfvén” waves have imaginary
frequency (ω2 < 0 ): exponential growth! These modes are called kink instabilities
because of the associated helical deformation of the plasma column. For wave-
lengths k−1

z ≫ a , the expression for their growth rate reveals cause of the instability,
viz. curved magnetic field Bθ(a) at the plasma edge:

ω2 ≈ − B2
θ(a)

2µ0ρ0a2
. (90)

Iz
Bθ

magnetic 
pressure

• Growth time of the kink instability ∼ 1 µ s ⇒ disastrous!
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Cure: tokamak

• Cure: Replace cylinder by torus (tokamak). Since kink modes are long wavelength
instabilities, choose parameters such that unstable wavelengths do not fit in the torus.
This yields the Kruskal–Shafranov condition for external kink mode stability, which
puts a limit on the total plasma current:

Iz(a) <
2πa2Bz

µ0R0
. (91)

• In terms of the ‘safety factor’ (∼ pitch of the magnetic field lines):

q(a) > 1 , q(r) ≡ rBz(r)

R0Bθ(r)
=

2πr2Bz(r)

µ0R0Iz(r)
. (92)

• Now, the design of a thermonuclear machine becomes an optimization problem of
chosing current distributions that permit both equilibrium and stability .
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Plasma coherence

We introduced the three main theoretical approaches of plasmas (theory of single particle
motion, kinetic theory of collections of many particles, and theory of magnetohydrody-
namics pertaining to global macroscopic plasma dynamics in complex magnetic fields).
Three effects were encountered giving plasmas the coherence that is necessary for
thermonuclear confinement of laboratory plasmas and which is also characteristic for
magnetized plasmas encountered in nature:

• In the single particle picture, we found that particles of either charge stick to the
magnetic field lines by their gyro-motion which restrains the perpendicular motion.

• In the kinetic description, we found that, because of the large electric fields that occur
when electrons and ions are separated, deviations from neutrality can occur only in
very small regions (of the size of a Debye length). Over larger regions, ions and
electrons stay together to maintain approximate charge neutrality .

• In the fluid picture, it was found that currents in the plasma create their own confining
magnetic field and that Alfvén waves act to restore magnetic field distortions. We
also encountered the first destructive effect, viz. the external kink instability .


