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Overview

• Introduction: theoretical themes for a complete MHD description of laboratory and
astrophysical plasmas, static versus stationary plasmas;

• Spectral theory of stationary plasmas: Frieman–Rotenberg formalism for waves
and instabilities, quadratic eigenvalue problem gives complex eigenvalues, implica-
tions of the Doppler shift for the continuous spectra;

• Kelvin–Helmholtz instability of streaming plasmas: gravitating plasma with an
interface where the velocity changes discontinuously, influence of the magnetic field;

• Magneto-rotational instability of rotating plasmas: derivation of the dispersion
equation, growth rates of instabilities, application to accretion disks.
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Theoretical themes

• In overview of magnetic structures and dynamics (Chap. 8), we encountered:

– Central importance of magnetic flux tubes ⇒ Cylindrical plasmas , 1D: f(r)
[ Volume 1: Chap. 9 ]

– Astrophysical flows (winds, disks, jets) ⇒ Plasmas with background flow
[ this lecture, Volume 2: MHDF.pdf ]

– Explosive phenomena due to reconnection ⇒ Resistive MHD
[ Volume 2: MHDR.pdf ]

– Magnetic confinement for fusion (tokamak) ⇒ Toroidal plasmas , 2D: f(r, ϑ)
[ Volume 2: MHDT.pdf ]

– Shocks, transonic flows, dynamos, turbulence ⇒ Nonlinear MHD
[ Volume 2: MHDS.pdf ]

– All plasma dynamics (e.g. space weather) ⇒ Computational MHD
[ Volume 2: . . . ]

• MHD with background flow is the most urgent topic (also for fusion research since
divertors and neutral beam injection cause significant flows in tokamaks).

⇒ From static ( v = 0) to stationary ( v 6= 0) plasmas!
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Static versus stationary plasmas

• Starting point is the set of nonlinear ideal MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

ρ(
∂v

∂t
+ v · ∇v) + ∇p − j × B − ρg = 0 , j = ∇× B , (2)

∂p

∂t
+ v · ∇p + γp∇ · v = 0 , (3)

∂B

∂t
−∇× (v × B) = 0 , ∇ · B = 0 , (4)

with gravitational acceleration g = −∇Φgr due to external gravity field Φgr.

• Recall the simplicity of static equilibria (∂/∂t = 0 ,v = 0),

∇p = j × B + ρg , j = ∇× B , ∇ · B = 0 , (5)

with perturbations described by self-adjoint operator F with real eigenvalues ω2:

F(ξ) = ρ
∂2ξ

∂t2
⇒ F(ξ̂) = −ρω2ξ̂ . (6)

• Can one construct a similar powerful scheme for stationary p lasmas ( v 6= 0)?



Waves and instabilities in stationary plasmas: Introduction (3) F-4
�

�

�


Stationary equilibria

• Basic nonlinear ideal MHD equations for stationary equilibria (∂/∂t = 0):

∇ · (ρv) = 0 , (7)

ρv · ∇v + ∇p = j × B + ρg , j = ∇× B , (8)

v · ∇p + γp∇ · v = 0 , (9)

∇× (v × B) = 0 , ∇ · B = 0 . (10)

⇒ None of them trivially satisfied now (except for simple geometries)!

• For plane gravitating plasma slab, equilibrium unchanged w.r.t. static case:

(p + 1
2
B2)′ = −ρg ( ′ ≡ d/dx ) . (11)

• For cylindrical plasma, the equilibrium is changed significantly by the centrifugal
acceleration, − v · ∇v = (v2

θ/r)er :

(p + 1
2
B2)′ +

1

r
B2

θ =
1

r
ρv2

θ − ρΦ′
gr ( ′ ≡ d/dr ) . (12)

⇒ Modifications for plane and cylindrical stationary flows quite different:
translations and rotations are physically different phenomena.
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Frieman–Rotenberg formalism [Rev. Mod. Phys. 32, 898 (1960)]

Spectral theory for general stationary equilibria (no further simplifying assumptions):

 (r   , t )xx 0

stationary flow

perturbed flow

  r   , t0

  r   ,t  =  00

  r

• First, construct displacement vector ξ

connecting perturbed flow at position r

with unperturbed flow at position r0:

r(r0, t) = r0 + ξ(r0, t) . (13)

• In terms of the coordinates (r0, t), the
equilibrium is time-independent:

ρ = ρ0(r0), etc., satisfiying (7)–(10).

• Gradient ∇ = (∇r0) · ∇0 = ∇(r − ξ) · ∇0 ≈ ∇0 − (∇0ξ) · ∇0 , (14)

and Lagrangian time derivative D

Dt
≡ ∂

∂t

∣∣∣
r0

+ v0 · ∇0 , (15)

yield expression for the velocity at the perturbed trajectory:

v(r0 + ξ, t) ≡ Dr

Dt
=

Dr0

Dt
+

Dξ

Dt
= v0 + v0 · ∇0ξ +

∂ξ

∂t
. (16)
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Frieman–Rotenberg formalism (cont’d)

• Linearization of Eqs. (1), (3), (4) gives perturbed quantities in terms of ξ alone:
ρ ≈ ρ0 − ρ0∇0 · ξ = ρ0 + ρ1

E + ξ · ∇0ρ0 , (17)

p ≈ p0 − γp0∇0 · ξ = p0 + π + ξ · ∇0p0 , ( π ≡ p1
E ) (18)

B ≈ B0 + B0 · ∇0ξ − B0∇0 · ξ = B0 + Q + ξ · ∇0B0 , (Q ≡ B1
E ) (19)

where we will now drop the superscripts 0 (since everything has this superscript).

• Substitution in Eq. (2) (+ algebra!) ⇒ spectral equation for equilibria with flow:

ρ
∂2ξ

∂t2
+ 2ρv · ∇∂ξ

∂t
− G(ξ) = 0 , (20)

G ≡ F + ∇ · (ξ ρv · ∇v − ρvv · ∇ξ) , (21)

F ≡ −∇π − B × (∇× Q) + (∇× B) × Q + (∇Φ)∇ · (ρξ) .

• For normal modes, ξ ∼ exp(−iωt), a quadratic eigenvalue problem is obtained:

G(ξ) + 2iρωv · ∇ξ + ρω2ξ = 0 , (22)

where the generalised force operator G is selfadjoint (like F in the static case)
but eigenvalues ω are complex because of the Doppler shift operator iv · ∇.
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Spectral equation for plane slab

• For the plane slab model of Chapter 7, extended with a plane shear flow field,

B = By(x)ey + Bz(x)ez , ρ = ρ(x) , p = p(x) ,

v = vy(x)ey + vz(x)ez , (23)

the equilibrium is unchanged and the two new terms in G yield: v · ∇v = 0 and
−∇ · (ρvv · ∇ξ) = −ρ(v · ∇)2ξ , so that the eigenvalue problem (22) becomes:

G(ξ) + 2iρωv · ∇ξ + ρω2ξ = F(ξ) + ρ(ω + iv · ∇)2 = 0

⇒ F(ξ) = −ρω̃2 ξ , ω̃ ≡ ω + iv · ∇ . (24)

• Hence, the equations for the static slab remain valid with the replacement

ω → ω̃(x) ≡ ω − Ω0(x) , Ω0 ≡ k0 · v(x) , (25)

where Ω0(x) is the local Doppler shift and ω̃(x) is the local Doppler shifted frequency
observed in a local frame co-moving with the plasma at the vertical position x.

• Since ω̃ depends on x, eigenvalues will be shifted by some average of Ω0(x) across
the layer. If a static equilibrium is unstable (eigenvalue on positive imaginary axis),
for the corresponding equilibrium with flow that eigenvalue moves into the complex
plane and becomes an overstable mode.



Waves and instabilities in stationary plasmas: Spectral theory (4) F-8
�

�

�


HD continua for plane shear flow

• How are the MHD waves affected by background flow of the plasma?

First, consider continuous spectrum in the HD case for plane slab geometry,
inhomogeneous fluid with horizontal flow:

v = vy(x)ey + vz(x)ez .

• Lagrangian time derivative:

(Df/dt)1 ≡ (∂f/∂t + v · ∇f)1 = −i ω̃f1 + f0
′v1x , ω̃ ≡ ω − k0 · v ,

ω̃(x) : frequency observed in local frame co-moving with fluid layer at position x.

• Singularities when ω̃ = 0 somewhere in the fluid ⇒ HD flow continuum {Ω0(x)},
consisting of the zeros of the local Doppler shifted frequency

ω̃ ≡ ω − Ω0(x) , Ω0 ≡ −iv · ∇ = k0 · v , on the interval x1 ≤ x ≤ x2 .

These have been extensively investigated in the hydrodynamics literature.

[Lin 1955; Case 1960; Drazin and Reid, Hydrodynamic Stability (Cambridge, 2004)]
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MHD continua for plane shear flow

• Forward ( +) / backward ( −) Alfv én and slow continua, and fast cluster points:

Ω±
A ≡ Ω0 ± ωA , ωA ≡ F/

√
ρ , F ≡ −iB · ∇ = k0 · B ,

Ω±
S ≡ Ω0 ± ωS , ωS ≡

√
γp

γp + B2
F/

√
ρ , Ω0 ≡ −iv · ∇ = k0 · v ,

Ω±
F ≡ ±∞ .

• The flow contribution to the MHD continua creates the following ordering of the local
frequencies (which are all real) in the co-moving frame:

Ω−
F ≤ Ω−

f0 ≤ Ω−
A ≤ Ω−

s0 ≤ Ω−
S ≤ Ω0 ≤ Ω+

S ≤ Ω+
s0 ≤ Ω+

A ≤ Ω+
f0 ≤ Ω+

F .

• The discrete spectra are monotonic for real ω outside these frequencies.

• In the limit B → 0, the Alfvén and slow continua collapse into the flow continuum,

Ω±
A → Ω0 , Ω±

S → Ω0 (whereas Ω±
F remains at ±∞) .

Vice versa, the HD flow continuum is absorbed by the MHD continua when B 6= 0 .
Hence, contrary to the literature, there is no separate flow continuum in MHD!
[Goedbloed, Beliën, van der Holst, Keppens, Phys. Plasmas 11, 4332 (2004)]
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Real parts of HD & MHD spectra

• HD spectrum of fluid flow:
non-monotonic
Sturmian
anti-Sturmian

continuum

backward / forward 
g modes

backward p 
modes

forward 
p modes

ω    

F Ω   -

x

(− ∞) (∞)

E Ω   (        )

f0 Ω   -

0 Ω   

f0 Ω   +

F Ω   +

x

• MHD spectrum of plasma flow:

ω    
F Ω   +F Ω   -

x x
S Ω   - S Ω   +A Ω   - A Ω   +

f0 Ω   - s0 Ω   - 0 Ω   f0 Ω   
+

(− ∞) (∞)s0 Ω   +

  fast   slow   Alfvén   fast  slow    Alfvén

backward forward

E Ω   (        )
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Kelvin–Helmholtz instability: equilibrium

• Extend Rayleigh–Taylor instability of plasma–vacuum interface (sheets 6-36 – 6-42)
to plasma–plasma interface with two different velocities (see figure on 6-36):
Rayleigh–Taylor + Kelvin–Helmholtz!

• Upper layer (0 < x ≤ a):

ρ = const , v = (0, vy, vz) = const , B = (0, By, Bz) = const ,

p′ = −ρg ⇒ p = p0 − ρgx (p0 ≥ ρga) . (26)

Lower layer ( − b ≤ x < 0):

ρ̂ = const , v̂ = (0, v̂y, v̂z) = const , B̂ = (0, B̂y, B̂z) = const ,

p̂′ = −ρ̂g ⇒ p̂ = p̂0 − ρ̂gx . (27)

• Jumps at the interface (x = 0):

BC: p0 + 1
2
B2

0 = p̂0 + 1
2
B̂2

0 (pressure balance) , (28)

⇒ j⋆ = n × [[B]] = ex × (B − B̂) (surface current) ,
(29)

⇒ ω⋆ = n × [[v]] = ex × (v − v̂) (surface vorticity) .
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Kelvin–Helmholtz instability: normal modes

• Now (in contrast to energy principle analysis of 6-36 – 6-42), normal mode analysis:

ξ ∼ exp [i(kyy + kzz − ωt)] .

• For incompressible plasma, taking limit c2 ≡ γp/ρ → ∞ of Eq. (50) on sheet 7-20,
with plane flow, replacing ω → ω̃ (Eq. (25) of sheet F-7), basic ODE becomes:

d

dx

[
ρ(ω̃2 − ω2

A)
dξ

dx

]
− k2

0

[
ρ(ω̃2 − ω2

A) + ρ′g
]

ξ = 0 . (30)

Doppler shifted freq. ω̃ ≡ ω − Ω0 , Ω0 ≡ k0 · v; Alfvén freq. ωA ≡ k0 · B/
√

ρ0 .

• In this case, all equilibrium quantities constant so that ODEs simplify to equations
with constant coefficients:

ξ′′ − k2
0ξ = 0 , BC ξ(a) = 0 ⇒ ξ = C sinh [k0(a − x)] , (31)

ξ̂′′ − k2
0 ξ̂ = 0 , BC ξ̂(−b) = 0 ⇒ ξ̂ = Ĉ sinh [k0(x + b)] . (32)

⇒ Surface modes (cusp-shaped eigenfunctions). This part is trivial, contains hardly
any physics. Physics comes from the BCs at x = 0 determining the eigenvalues.
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Kelvin–Helmholtz instability: interface conditions

• Now (in contrast to energy principle analysis of 6-36 – 6-42), need both interface
conditions (model II∗ BCs), to determine relative amplitude Ĉ/C and eigenvalue ω :

– First interface condition (continuity of normal velocity):

[[n · ξ]] = 0 ⇒ ξ(0) = ξ̂(0) = 0 ⇒ C sinh k0a = Ĉ sinh k0b . (33)

– Second interface condition (pressure balance):

[[ Π + n · ξ n · ∇(p + 1
2
B2) ]] = 0 , Π ≡ −γp∇ · ξ − ξ · ∇p + B · Q , (34)

where γp∇ · ξ is undetermined. Determine Π from expression for compressible
plasmas, Book, Eq. (7.99), with ω replaced by ω̃ and taking limit γ → ∞:

Π ≡ −N

D
ξ′ + ρg

ω̃2(ω̃2 − ω2
A)

D
ξ → ρ

k2
0

(ω̃2 − ω2
A)ξ′ . (35)

• Dividing the second by the first interface condition then gives
[[

ρ

k2
0

(ω̃2 − ω2
A)

ξ′

ξ
− ρg

]]
= 0 ⇒ eigenvalue ω . (36)
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Kelvin–Helmholtz instability: dispersion equation

• Inserting solutions (31) and (32) for ξ and ξ̂ yields the dispersion equation:

− ρ
[
(ω − Ω0)

2 − ω2
A

]
coth(k0a)− k0ρg = ρ̂

[
(ω − Ω̂0)

2 − ω̂2
A

]
coth(k0b)− k0ρ̂g .

(37)
Describes magnetic field line bending (Alfvén), gravity (RT), velocity difference (KH).

• Approximations for long wavelengths (k0x ≪ 1): coth k0x ≈ (k0x)−1,

short wavelengths (k0x ≫ 1): coth k0x ≈ 1.

• Solutions for short wavelengths (walls effectively at ∞ and −∞):

ω =
ρΩ0 + ρ̂Ω̂0

ρ + ρ̂
±

√

−ρρ̂(Ω0 − Ω̂0)2

(ρ + ρ̂)2
+

ρω2
A + ρ̂ω̂2

A

ρ + ρ̂
− k0(ρ − ρ̂)g

ρ + ρ̂
. (38)

⇒ Stable (square root real) if

(k0 · B)2 + (k0 · B̂)2 >
ρρ̂

ρ + ρ̂
[k0 · (v − v̂)]2 + k0(ρ − ρ̂)g . (39)

magnetic shear K–H drive R–T drive
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Kelvin–Helmholtz instability: generic transitions

• Pure KH instability (B = B̂ = 0, g = 0, k0 ‖ v ‖ v̂):

ω = k0

[
ρv + ρ̂v̂

ρ + ρ̂
± i

√
ρρ̂

ρ + ρ̂
|v − v̂|

]
. (40)

⇒ Degeneracy of Doppler mode ω = k0v lifted by v 6= v̂.

• Doppler shifted RT instability (B = B̂ = 0, v = v̂, k0 ‖ v):

ω = k0v ± i

√
k0(ρ − ρ̂)g

ρ + ρ̂
. (41)

⇒ Degeneracy of Doppler mode ω = k0v lifted by ρ 6= ρ̂.

• Hence, generic transitions to instability for (a) static, and (b) stationary plasmas:

ω
(a)

ω
(b)

Exp. growth: through origin Overstability: through real axis
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Kelvin–Helmholtz instability: generalizations

• Of course, the assumption of two homogeneous plasma layers with a velocity differ-
ence at the interface (made to make the analysis tractable for a relevant instability)
evades the basic problems of diffuse plasma flows: continuous spectra, cluster
points, and eigenvalues on unknown paths in the complex ω plane.

⇒ Further progress only by linear computational methods: finite differences and
finite elements, spectral methods, linear system solvers, etc.

• Instabilities always grow towards amplitudes that necessitate consideration of the
nonlinear evolution : coupling of linear modes, nonlinear saturation, and turbulence
appear: see simulation of Rayleigh–Taylor instability with Versatile Advection Code,
where secondary Kelvin–Helmholtz instabilities develop (sheet 6-42).

⇒ Further progress mainly by nonlinear computational methods: implicit and semi-
implicit time stepping, finite volume methods, shock-capturing methods, etc.
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Recap.: MHD wave equation in cylinder (static) [Vol. 1: Chap. 9]

• Fourier harmonics ξ̂(r; m, k) exp [i(mθ + kz)], keep differential operators d/dr.

• Field line projection in normal, perpendicular, and parallel directions:

er ≡ ∇r , e⊥(r) ≡ (B/B) × er , e‖(r) ≡ B/B , (42)

∂r ≡ d/dr ,

∇ = er∂r + eθr
−1∂θ + ez∂z ⇒ G(r) ≡ mBz/r − kBθ , (43)

(watch out: ∂θer = eθ , ∂θeθ = −er!) F (r) ≡ mBθ/r + kBz ,

ξ = ξ er − iη e⊥ − iζ e‖ . (44)

MHD spectral equation F(ξ) = −ρω2ξ (+ algebra!) ⇒ Vector eigenvalue problem:



d

dr

γp + B2

r

d

dr
r − F 2 − r

(
B2

θ

r2

)′
d

dr

G

B
(γp + B2) − 2

kBθB

r

d

dr

F

B
γp

− G

B

γp + B2

r

d

dr
r − 2

kBθB

r
−G2

B2
(γp + B2) − F 2 −FG

B2
γp

− F

B

γp

r

d

dr
r −FG

B2
γp −F 2

B2
γp







ξ

η

ζ




= −ρω2




ξ

η

ζ




.

(45)
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• Eliminate perpendicular and parallel components η and ζ :

η =
ρ(γp + B2)G(ω2 − ω2

S) rχ′ + 2kBθ(B
2ρω2 − γpF 2) χ

r2BD
,

(46)

ζ =
ργpF [(ω2 − ω2

A) rχ′ + 2kBθGχ]

r2BD
,

• Substitute in 1st component ⇒ generalized Hain–Lüst equation:

d

dr

[
N

rD

dχ

dr

]
+

1

r

[
ρω2 − F 2 − r

(
B2

θ

r2

)′
− 4k2B2

θ

r2D
(B2ρω2 − γpF 2)

+ r

{
2kBθG

r2D
((γp + B2)ρω2 − γpF 2)

}′ ]
χ = 0 , (47)

with singular factors

N = N(r; ω2) ≡ ρ2(γp + B2)(ω2 − ω2
A) (ω2 − ω2

S) ,
(48)

D = D(r; ω2) ≡ ρ2ω4 − (m2/r2 + k2)(γp + B2)(ω2 − ω2
S) .

• BCs:

χ(0) = χ(a) = 0 ( including m = 1 at r = 0 ) . (49)
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MHD wave equation in cylinder with flow

• Generalizing the MHD wave equation to equilibria with background flow, exploiting
the MHD spectral equation G(ξ) + 2iρωv · ∇ξ + ρω2ξ = 0 ( + a lot of algebra!)
⇒ Quadratic vector eigenvalue problem:




F0 +




− rρ

(
Φ′

gr

r

)′
−Λ

G

B
−Λ

F

B

− Λ
G

B
0 0

− Λ
F

B
0 0




− 2ρ
vθ

r
ω̃




0
Bz

B

Bθ

B
Bθ

Bz
0 0

Bθ

Bθ
0 0




+ ρω̃2
I







ξ

η

ζ




= 0 , (50)

where F0 is the matrix on the LHS of the static wave equation (45), the function
Λ(r) ≡ ρ(v2

θ/r−Φ′
gr) represents the deviation from static equilibrium due to rotation

and gravity (or the deviation of HD equilibria from Keplerian flow), the Doppler shifted
frequency ω̃(r) ≡ ω − Ω0(r) , where Ω0 ≡ mvθ/r + kvz, and I is the unit matrix.

• Elimination of η and ζ and substitution in the first component, yields again a 2nd
order ODE like the Hain–Lüst equation: see Eq. (51) below.
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Observations

Young Stellar Object (M∗ ∼ 1M⊙)

disk and jets

Active Galactic Nucleus (∼ 108M⊙)

disk (optical) and jets (radio)
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Magneto-rotational instability

• Example of cylindrical flow. Original references:

– Velikhov, Soviet Phys.–JETP Lett. 36, 995 (1959);
– Chandrasekhar, Proc. Nat. Acad. Sci. USA 46, 253 (1960).

• Applied to accretion disks by Balbus and Hawley, Astrophys. J. 376, 214 (1991).

Problem: how can accretion on Young Stellar Object (mass M∗ ∼ M⊙) or Active
Galactic nucleus (mass M∗ ∼ 109M⊙) occur at all on a reasonable time scale?

– Without dissipation impossible, because disk would conserve angular momentum;
some form of viscosity needed to transfer angular momentum to larger distances.

– However, ordinary molecular viscosity much too small to produce sizeable transfer,
and for turbulent increase (small-scale instabilities) no HD candidates were found.

– It is generally assumed that the resolution of this problem involves MHD instability:
the magneto-rotational instability (MRI) .

• Simplify the axi-symmetric (2D) representation of the disk (see sheet 4-9) even further
by neglecting vertical variations so that a cylindrical (1D) slice is obtained.

[One should object: but that is no disk at all anymore! Yet, this is how plasma-
astrophysicists grapple with the problem of anomalous (turbulent) transport.]
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MRI: cylindrical representation

• Generalization of Hain–Lüst equation, Book, Eq. (9.31), to cylindrical flow with
normal modes ξ ∼ exp [i(mθ + kz − ωt)] ,

again yields second order ODE for radial component of the plasma displacement:

d

dr

[
N

rD

dχ

dr

]
+

[
U +

V

D
+

(
W

D

)′ ]
χ = 0 , χ ≡ rξ . (51)

[Bondeson, Iacono and Bhattacharjee, Phys. Fluids 30, 2167 (1987);

extended with gravity: Keppens, Casse, Goedbloed, Astrophys. J. 579, L121 (2002)]

• Assumption of small magnetic field,
β ≡ 2p/B2 ≫ 1 , (52)

justifies use of this spectral equation in the incompressible limit:

d

dr

[
ρω̃2 − F 2

m2 + k2r2
r

dχ

dr

]
− 1

r

[
ρω̃2 − F 2 + r

(
B2

θ − ρv2
θ

r2

)′
+ ρ′Φ′

gr

− 4k2(BθF + ρvθω̃)2

(m2 + k2r2)(ρω̃2 − F 2)
− r

(
2m(BθF + ρvθω̃)

r(m2 + k2r2)

)′ ]
χ = 0 . (53)
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MRI: approximations

∆ z

z

r

∆ r

AAAAAA
AAAAAA

AAAAAA
AAAAAA

θ

• Gravitational potential of compact object is approximated for cylindrical slice,

Φgr = −GM∗/
√

r2 + z2 ≈ −GM∗/r , (54)

with short wavelengths fitting the disk in the vertical direction:

k ∆z ≫ 1 . (55)

• Incompressibility is consistent with constant density so that the only gravitational
term, ρ′Φ′

gr/r, disappears from the spectral equation. However, Φgr does not disap-
pear from the equilibrium equation that ρ, p, Bθ, Bz, and vθ have to satisfy,

(p + 1
2
B2)′ +

1

r
B2

θ =
1

r
ρv2

θ − ρΦ′
gr ,

so that stability will still be influenced by gravity.
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MRI: further approximations

• Assume purely vertical and constant magnetic field and purely azimuthal velocity,

Bθ = 0 , vz = 0 ⇒ ωA = kBz/
√

ρ = const , Ω0 = mvθ/r , (56)

and restrict analysis to vertical wave numbers k only,

m = 0 ⇒ Ω0 = 0 ⇒ ω̃ = ω . (57)

In the spectral equation, only ω2 appears: ω = 0 remains the marginal point!

(ω2 − ω2
A)

d

dr

(
1

r

dχ

dr

)
− k2

r

[
ω2 − ω2

A − r

(
v2

θ

r2

)′
−4ω2v2

θ/r
2

ω2 − ω2
A

]
χ = 0 . (58)

• Introduce angular frequency Ω ≡ vθ/r and epicyclic frequency κ,

κ2 ≡ 1

r3
(r4Ω2)′ = 2rΩΩ′ + 4Ω2 (59)

(Specific angular momentum L ≡ ρrvθ ≡ ρr2Ω ; hence κ2 = 0 ⇒ L′ = 0 .)

The spectral equation then becomes:

(ω2 − ω2
A)

d

dr

(
1

r

dχ

dr

)
− k2

r

[
ω2 − ω2

A − κ2(r) − 4ω2
AΩ2(r)

ω2 − ω2
A

]
χ = 0 . (60)
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MRI: criteria

• Recall construction of quadratic form (sheet 7-24e):

(Pχ′)
′ − Qχ = 0 ⇒

∫
(Pχ′2 + Qχ2) rdr = 0 . (61)

⇒ For eigenfunctions (oscillatory χ), we should have Q/P < 0 for some r.

• From Eq. (60), this gives the following criteria for instability (ω2 < 0):

(a) MHD (ω2
A 6= 0): ω2

A + κ2 − 4Ω2 < 0
(for some range of r) . (62)

(b) HD (ω2
A ≡ 0): κ2 < 0

• For Keplerian rotation (neglecting p and B on equilibrium motion):

1

r
ρv2

θ = ρΦ′
gr = ρ

GM∗
r2

⇒ Ω2 =
GM∗

r3
⇒ κ2 =

GM∗
r3

> 0 . (63)

⇒ In HD limit, opposite of (62)(b) holds, Rayleigh’s circulation criterion is satisfied:
the fluid is stable to axi-symmetric modes (m = 0) if κ2 ≥ 0 everywhere.

This explains the interest in MHD instabilities as candidates for turbulent increase of
the dissipation processes in accretion disks.
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MRI: MHD versus HD

• MHD instability criterion in the limit ω2
A → 0 (magnetic field sufficiently small):

κ2 − 4Ω2 ≡ 2rΩΩ′ < 0 . (64)

This is satisfied for Keplerian disks: MRI works for astrophysically relevant cases!
Stabilizing field contribution (ω2

A > 0) should be small enough to maintain this effect.

• Discrepancy of HD and MHD stability results is due to interchange of limits:

HD disk: ω2
A = 0 , ω2 → 0 , MHD disk: ω2 = 0 , ω2

A → 0.

This is resolved when the growth rates of the instabilities are considered.

• Instead of numerically solving ODE (60), just consider radially localized modes,
χ ∼ exp(iqr), q∆r ≫ 1, producing a local dispersion equation:

(k2 + q2)(ω2 − ω2
A)2 − k2κ2(ω2 − ω2

A) − 4k2ω2
AΩ2 = 0 . (65)

Solutions for q2 ≪ k2:

ω2 = ω2
A + 1

2
κ2 ± 1

2

√
κ4 + 16ω2

AΩ2 ≈
{

κ2 + ω2
A(1 + 4Ω2/κ2)

ω2
A(1 − 4Ω2/κ2)

, (66)

Limit ω2
A → 0 : (1) Rayleigh mode (HD), ω2

+ → κ2 > 0 , (2) MRI (MHD), ω2
− → 0 .
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MRI: Numerical results [Keppens, Casse, Goedbloed, ApJ 579, L121 (2002)]

• Full spectrum with toroidal field ( m = 0)

⇒ Discrete MRIs form cluster spectrum towards slow continuum:
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MRI: Numerical results [Keppens, Casse, Goedbloed, ApJ 579, L121 (2002)]

• Full spectrum with toroidal field ( m = 10)

⇒ Many more unstable sequences in the complex ω-plane:


