ITER EC H&CD System

M. Hendersona, F. Albajarb, S. Albertic, U. Baruahd, T. Bigelowe, B. Becketa, R. Bertizzoloc, T. Bonicellib, A. Bruschf, J. Caughmane, R. Chavanc, S. Cirantf, A. Collazosc, C. Darbosa, M. deBaarg, G. Denisovh, D. Farinaf, F. Gandinia, T. Gassmana, T.P. Goodmanc, R. Heidingerb, J.P. Hoggec, O. Jeana, K. Kajiwarai, W. Kasparekj, A. Kasugaii, S. Kernl, N. Kobayashii, H. Kumricj, J.D. Landisc, A. Morof, C. Nazarea, J. Odai, I. Paganakisc, P. Plataniaf, B. Plaumj, E. Polik, L. Portec, B. Piosczykl, G. Ramponif, S.L. Raod, D. Rasmussene, D. Rondeng, G. Saibeneb, K. Sakamotoi, F. Sanchezc, T. Schererl, M. Shapirom, C. Sozzii, P. Spaehl, D. Strausl, O. Sauterc, K. Takahashii, A. Tangaa, R. Temkinm, M. Thumml, M.Q. Tranc, H. Zohmk and C. Zuccac

a ITER Organization, St. Paul-lez-Durance, 13067 France;
b Fusion for Energy, C/ Josep Pla 2, Torres Diagonal Litoral-B3,E-08019 Barcelona – Spain
c CRPP, Association EURATOM-Confédération Suisse, EPFL Ecublens, CH-1015 Lausanne, Suisse
d Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar, 382428, India
e US ITER Project Office, ORNL, 055 Commerce Park, PO Box 2008, Oak Ridge, TN 37831, USA
f Istituto di Fisica del Plasma, Association EURATOM-ENEA-CNR, Milano, Italy
g Association EURATOM-FOM, 3430 BE Nieuwegein, The Netherlands
h Institute of Applied Physics, 46 Ulyanov Street, Nizhny Novgorod, 603950 Russia
i Japan Atomic Energy Agency (JAEA) 801-1 Mukoyama, Naka-shi, Ibaraki 311-0193 Japan
j Institut fur Plasmaforschung, Universitat Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
k IPP-Garching, Association EURATOM-IPP,D-85748 Garching, Germany.
l Association EURATOM-FZK, IMF, Postfach3640 D-76021 Karlsruhe, Germany
m MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA

With the help of many, many other colleagues:
Outline

- EC System Procurement
- General Overview
- Envisioned Functional Capabilities
- Today’s Hot Ideas
- Steps Toward First Plasma
Presentations associated with the ITER EC System

Physics

| Poster II | Sakamoto, K. | Development of high power long pulse ITER gyrotrons |

Launchers

| Tuesday PM | Strauss, D. | Deflections and Vibrations of the ITER ECRH Upper Launcher |
| Poster II | Scherer, T. | Recent upgrades of the ITER ECRH CVD torus diamond window design and investigation of dielectric diamond properties |

Transmission Lines

Tuesday PM	Gandini, F.	An Overview of the ITER EC Transmission Line
Poster II	Rasmussen, D.	R&D progress on the ITER EC transmission line
Poster II	Olstad, R.	Progress on Design and Testing of Corrugated Waveguide Components Suitable for ITER ECH&CD Transmission Lines

Gyrotrons

Monday am	Sakamoto, K.	Development of high power long pulse ITER gyrotrons
Monday am	Denisov, G.	Recent Development Results in Russia of Megawatt Power Gyrotrons for Plasma Fusion Installations
Monday am	Albajar, F.	The European 2 MW gyrotron for ITER
Posters I	Gantenbein, G.	Progress in stable operation of high power gyrotrons
Poster II	Jin, J.	Improved Design of a Quasi-Optical Mode Converter for the Coaxial-Cavity ITER Gyrotron
ITER H&CD Systems

All four heating systems envisioned for ITER in preparation for DEMO

<table>
<thead>
<tr>
<th></th>
<th>NB</th>
<th>IC</th>
<th>EC</th>
<th>LH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>33MW +17MW</td>
<td>20MW +20MW</td>
<td>20MW +20MW</td>
<td>0MW +40MW</td>
</tr>
<tr>
<td>Purpose</td>
<td>Plasma Rotation for stabilizing RWM</td>
<td>Bulk ion heating</td>
<td>Localized H&CD for MHD control</td>
<td>off-axis Bulk current drive</td>
</tr>
</tbody>
</table>

EC-16 Sanya, China: ITER EC System 13 April 2016 M Henderson
EC System Requirements

Based on present version of System Requirements Document (SRD52):

- Provide auxiliary heating (20MW) to assist in accessing H mode and achieve Q=10.
- Provide steady state on-axis and off-axis current drive in the range of 0<\(\rho T<0.4\).
- Control MHD instabilities by localized current drive.
- Assist initial breakdown and heat during current ramp-up.
- Provide ~7MW of counter-ECCD in the range of 0<\(\rho T<0.4\).
- Provide ON-OFF power modulated from CW to 1kHz and 100 to 50% power modulation from 1 to 5kHz.

170GHz gyrotrons (24MW)
in-line switches
4 Main EC Sub-systems

- PS to Gyrotron: HV connection at cathode
- Gyrotron to TL: Flange at MOU output
- TL to Launcher: Flange prior to diamond window
EC System Assembled from In-kind Procurements

Integration, interface management, some installation

<table>
<thead>
<tr>
<th>IO</th>
<th>EU</th>
<th>IN</th>
<th>JA</th>
<th>RF</th>
<th>US</th>
<th>CH</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration, interface management, some installation</td>
<td>Gyrotrons²</td>
<td>Gyrotrons²</td>
<td>Gyrotrons²</td>
<td>Gyrotrons²</td>
<td>24 T- Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8MW</td>
<td>2MW</td>
<td>8MW</td>
<td>2MW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 PS¹,²</td>
<td>1 PS¹,²</td>
<td>1 EL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4UL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Parties provide in-kind procurement of the 4 subsystems

Notes:

1. IO-DA has changed PS partitioning: 8 from EU and 5 from IN
2. DAs are responsible for installation
Division of Responsibilities

<table>
<thead>
<tr>
<th>PA Type:</th>
<th>Functional</th>
<th>Build to Print</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PS and Gyrotrons</td>
<td>TL</td>
</tr>
<tr>
<td>Conceptual Design</td>
<td>IO</td>
<td>IO</td>
</tr>
<tr>
<td>Preliminary Design</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>Final Design</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>Factory Acceptance Test</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td>Installation</td>
<td>DA</td>
<td>IO</td>
</tr>
<tr>
<td>On-site Tests</td>
<td>DA</td>
<td>IO</td>
</tr>
<tr>
<td>Commissioning & Operation</td>
<td>IO</td>
<td>IO</td>
</tr>
</tbody>
</table>

1) Work shared between IO and DA via task agreement or on voluntary basis
Envisioned Functional Capabilities

- EC System Procurement
- General Overview
- Envisioned Functional Capabilities
- Today’s Hot Ideas
- Steps Toward First Plasma

1. General Layout
2. RF Building
3. Transmission Line
4. Launchers
EC System Layout in RF Building

Tokamak Building

Assembly Hall

RF Building

5 Launchers (20MW)

≤24 Transmission lines

≤26 sources (24MW)

≤ 13 Power Supplies (50MW)

Upgrade 20MW

Upgrade 20MW
RF Building 2009

Building split in half between IC and EC

1st Level
- IC: Transformers
- EC: MHVPS 12+1 PS

2nd Level
- IC: Modules
- EC: BPS + APS 24+2 PS

3rd Level
- IC: Sources, TL
- EC: Gyro, TL, InC zone
Space Constraints in RF Building

Building has been reduced in size (almost 50%) to reduce cost over runs

Limited space for:
- Cooling feeder pipes
- Cable trays
- Air ducts

Possible solutions:
- Move some equipment into Assembly hall
- Increase height of each level
- Avoid including RF building into assembly hall

Strong Pressure to avoid changes and proceed with Procurement Arrangement

Even stronger pressure not to increase building size
RF Sources

Gyrotrons are rated for:
- Yesterday 800sec, today 3’000sec
- ≥0.96MW after MOU with ≥95% HE_{11} mode purity
- LHe free cryomagnets
- >50% efficiency (P_{out}/P_{in})

<table>
<thead>
<tr>
<th>JA</th>
<th>RF</th>
<th>EU</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MW</td>
<td>1MW (0.8)</td>
<td>1.4MW (2.2)</td>
<td>TBD</td>
</tr>
<tr>
<td>800s</td>
<td>200s (800s)</td>
<td>15ms (≤10ms)</td>
<td></td>
</tr>
</tbody>
</table>

Challenges:
- Mass production
- High Reliability (no arcs)
- Higher Power (≥1.2MW)
- Long life (≥5 years)
- High mode purity (≥98%)
- Higher Electrical efficiency
- Partial Power modulation 5kHz

Discussion for Thursday AM
Principle Functions:

1. Transmit the RF power from 24 gyrotrons to 5 the launchers
2. Transmission efficiency $\geq 90\%$ using evacuated 63.5mm corrugated HE$_{11}$ waveguide.
3. Compatible with 2.0MW transmission of 3000 sec long pulses and 25% duty cycle
4. Provide the secondary confinement barrier
5. Independent switching of 24 microwave beams between EL and UL in $\leq 2.0\text{sec.}$
6. Capable of deviating the power to a short pulse load
Transmission Line Layout in Assembly Hall
Both Launchers have been modified for improved Accessibility

Upper launcher
- 4 ports, 8 entries each
- Control of MHD activity (NTM, sawteeth)
- steering range: $0.3 < \rho_T \leq 0.95$

![Upper Launcher Diagram](image)

Equatorial launcher:
- 1 Port, 24 entries
- Central heating and current drive
- EL steering range: $0.0 < \rho_T \leq 0.4$

![Equatorial Launcher Diagram](image)

NTM stabilization
- objective: $\frac{j_{CD}}{j_{BS}} > 1.2$
- (achieved $1.8 < \frac{j_{CD}}{j_{BS}} < 3.6$)
Equatorial Launcher

three sets of eight beams
Toroidal steering

Focusing mirror
first wall
Steering mirror
Shielding
Closure Plate
Ex-vessel waveguide

EC Launchers
Equatorial Launcher

- Three sets of eight beams
- Toroidal steering

Upper Launcher

- Two sets of four beams
- Poloidal steering

Key Components

- Focusing mirror
- First wall
- Steering mirror
- Ex-vessel waveguide
- Shielding
- Closure Plate
- Mirror 1
- Mirror 2
- Mirror 3
- Taper
EC Launchers

Equatorial Launcher

- JAEA
- Three sets of eight beams
- Toroidal steering

Upper Launcher

- Mirror 1
- Mirror 2
- Mirror 3
- Taper
- Ex-vessel waveguide
- Shielding
- Closure Plate
- Ex-vessel waveguide

Challenges:
- High Power long pulse operation
- Remote handling compatibility (robust design)
- Steering mechanism (vacuum, nuclear, thermal)
- Electro-Magnetic forces
- Higher Thermal loading on mirrors
Envisioned Functional Capabilities

1. Accessibility in ρ_T
2. Decoupling Heating and CD
3. Accessibility in B_T
4. Start-up and Burn through
The PCR optimizes the toroidal and poloidal steering angles of the EC launchers to provide increased access from on-axis to near the plasma boundary.

2008 baseline:

- **EL**
 - Access $0.0 \leq \rho_T < 0.5$ (Central heating and current drive applications)
- **UL**
 - Access $0.5 \leq \rho_T < 0.85$ ($q=3/2$ and 2 NTM locations)

No access for $\rho_{NTM} > 0.85$

EL can't access due to beam shine thru

EL limited access (geometrical limitation)

No pure heating (EL and UL in co-CD)
The **EL** modifications are:

- Introduce ±5° poloidal tilt in top and bottom steering mirror
- Limit toroidal steering angle to ≤40° (avoid beam shine thru)
- Flip middle steering row for counter ECCD.

The **UL** modifications are:

- Access $\rho_T \leq 0.3$ with upper steering mirror
- Access $\rho_T \geq 0.95$ with two lower steering mirrors.
- Access $\rho_T > 0.88$ with two lower steering mirrors.
Switching network

- **24 gyrotrons**: Provides nearly complete access across the plasma cross section
- **40 (1.2MW) gyrotrons**: 40MW inside mid radius without new launchers

Maximum Power at any given Location

- 20MW
- 40MW

Deposited Power [MW]

- **20MW**: Provides nearly complete access across the plasma cross section
- **40MW**: 40MW inside mid radius without new launchers
B\textsubscript{TOR} EC system Operating Window

EC System achieves full functionality around two operating windows (X2 and O1)

- Concern for Power scaling of L to H-mode
- \(P_{L-H} \propto B_T \)
- \(\leq 2023 \) improve scaling laws for DT in 2026
- \(B_T \) window for EC inside of \(\rho_T < 0.5? \) \(\rho_T < 0.9? \)
D. Farina (CNR) investigated EL accessibility between O1 and X2 ranges decreasing B_{tor}.

Peak in deposition for fixed angle Toroidal scan for given B_{tor}.

1st Harmonic O and X mode
2nd Harmonic O and X mode

ρ_{tor} vs $B_{\text{tor}}/B_{\text{nom}}$

B_{nom}

EOB2

XM

OM

$B (\text{T})$
Increased Operational range in B_{tor}

L to H-mode: Heat inside separatrix $\rho_T \leq 0.90$

Central Heating: Power absorbed inside $\rho_T \leq 0.5$

Range of B_T increases
- 2$^{\text{nd}}$ harmonic: $2.3 \leq B_T \leq 3.7T$
- 3$^{\text{rd}}$ harmonic: (same)

Increased operating regions useful during ITER commissioning from 2018 to 2016 (D-T)

Aid in answering:

How much power is needed for L to H-mode transition prior to DT operation (2026)

EC-16 Sanya, China: ITER EC System 13 April 2016 M Henderson

24 / 32
PCR-160 Startup Gyrotrons

3 127GHz + 24 170GHz gyrotrons

Table: Comparison of 127GHz and 170GHz Gyrotrons

<table>
<thead>
<tr>
<th>Phase</th>
<th>LFS with 127GHz</th>
<th>Central/HFS with 170GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance in null region</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Available Power</td>
<td>(~2,\text{MW})</td>
<td>(\leq 20,\text{MW})</td>
</tr>
<tr>
<td>Pulse length</td>
<td>10 sec (PR)</td>
<td>(<3'600,\text{sec})</td>
</tr>
<tr>
<td>TL & launcher interface</td>
<td>Dual frequency window (increased cost, loading, risk)</td>
<td>No change</td>
</tr>
<tr>
<td>System availability</td>
<td>1 PS to 3 gyrotrons</td>
<td>12 PS to 24 gyrotrons</td>
</tr>
</tbody>
</table>

170GHz can achieve the required functionality for breakdown and burn through

Study concluded: Simplify EC system remove 127GHz, reduce investment costs

IN-DA is to procure two 170GHz gyrotrons, (up to 26 gyrotrons in total)
Today’s views of possible changes to EC System

- EC System Procurement
- General Overview
- Envisioned Functional Capabilities
- Today’s Hot Ideas
- Steps Toward First Plasma

1. Dual Frequency Gyrotrons
2. Diplexers
3. Increase $I_{CD} \rho_T = 0.5$
EC System Optimization

Cost is the driver of Functionality and Reliability

- Improve efficiency
- Optimize launcher access
- Tech.+Physics Collaboration
- Follow EC Physics Community
- Support Gyrotron development
- Design from proven Tech.
- Follow growing Tech.
- Learn from existing EC plants

Cost

Value Engineering

Proven Technology

Functionality

Reliability

Cost
Today’s Hot Topics

Dual Frequency Gyrotrons:
- Increases functionality at $B_T \approx 4T$
- Technology advancing

We wait until reliable operation is demonstrated:
- Cost increase on windows and MOU(?)
- Higher stray radiation at EL
- Not compatible with UL design
- ITER has to run at nominal field
- Decrease in gyrotron operating reliability

Increase I_{CD} at mid radius

Diplexers:
Dual Frequency Gyrotrons:
- Increases functionality at $B_T \sim 4T$
- Technology advancing

We wait until reliable operation is demonstrated
- Cost increase on windows and MOU(?)
- Higher stray radiation at EL
- Not compatible with UL design
- ITER has to run at nominal field
- Decrease in gyrotron operating reliability

Diplexers:
- Provides fast switching
- Avoids increase cost to PS
- Minimizes high loading on collector

We wait until reliable operation is demonstrated
- Concern about overall transmission efficiency ($1W \leq 10\€$)
- Demonstration of power handling for two 1MW beams from two gyrotrons and CW
- Size of component relative to waveguide spacing

Increase I_{CD} at mid radius
Today’s Hot Topics

Dual Frequency Gyrotrons:
- Increases functionality at $B_T \sim 4T$
- Technology advancing

We wait until reliable operation is demonstrated
- Cost increase on windows and MOU(?)
- Higher stray radiation at EL
- Not compatible with UL design
- ITER has to run at nominal field
- Decrease in gyrotron operating reliability

Diplexers:
- Provides fast switching
- Avoids increase cost to PS
- Minimizes high loading on collector

We wait until reliable operation is demonstrated
- Concern about overall transmission efficiency (1W≥10€)
- Demonstration of power handling for two 1MW beams from two gyrotrons and CW
- Size of component relative to waveguide spacing

Increase I_{CD} at mid radius
- Only UL accesses mid radius
- Increase toroidal angle increases ICD
- Limitation on toroidal angle due to Blanket Module
- Limitation on time and resources to redesign UL

New Task Agreement to be launched to analyze potential

Scenario 4

EC-16 Sanya, China: ITER EC System 13 April 2016 M Henderson
Steps Toward First Plasma

1. Present Schedule

EC System Procurement
General Overview
Envisioned Functional Capabilities
Today’s Hot Ideas

Steps Toward First Plasma
Schedule: Scenario I

General ITER Planning
Aim to spread out resource profile (economic crisis, additional costs, etc.)

- 2019: first plasma (no BM, 4–6MW EC for plasma initiation)
- 2021: Installation of BM, 20MW EC, 10MW IC, 16MW NBI
- 2023: Complete construction phase (73MW)
- ~2026: D-T phase

EC manufacturing and assembly relaxed

- 2014: Access to RF Building
- 2015: Start installation of PS, Gyrotrons, TL
- 2018: Simple EL with 8 beams, all TL and >8MW of gyrotrons
- 2019: All ex-vessel installed, 1 year commissioning
- 2020: Launchers installed
- 2020: Full EC system ready, 1 year float
- 2021: Full EC system operating
- 2023: Know if more power is needed; +20MW could be ready in 2026
Schedule: Present status

Future position of the tokamak

Future position of the EC system
Thank you for your Contribution!!!
Presentations associated with the ITER EC System

<table>
<thead>
<tr>
<th>Physics</th>
<th>Poster II</th>
<th>Sakamoto, K.</th>
<th>Development of high power long pulse ITER gyrotrons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poster II</td>
<td>Gantenbein, G.</td>
<td>Progress in stable operation of high power gyrotrons</td>
</tr>
<tr>
<td></td>
<td>Poster II</td>
<td>Jin, J.</td>
<td>Improved Design of a Quasi-Optical Mode Converter for the Coaxial-Cavity ITER Gyrotron</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Launchers</th>
<th>Tuesday PM</th>
<th>Strauss, D.</th>
<th>Deflections and Vibrations of the ITER ECRH Upper Launcher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poster II</td>
<td>Scherer, T.</td>
<td>Recent upgrades of the ITER ECRH CVD torus diamond window design and investigation of dielectric diamond properties</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmission Lines</th>
<th>Tuesday PM</th>
<th>Gandini, F.</th>
<th>An Overview of the ITER EC Transmission Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poster II</td>
<td>Rasmussen, D.</td>
<td>R&D progress on the ITER EC transmission line</td>
</tr>
<tr>
<td></td>
<td>Poster II</td>
<td>Olstad, R.</td>
<td>Progress on Design and Testing of Corrugated Waveguide Components Suitable for ITER ECH&CD Transmission Lines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gyrotrons</th>
<th>Monday am</th>
<th>Sakamoto, K.</th>
<th>Development of high power long pulse ITER gyrotrons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monday am</td>
<td>Denisov, G.</td>
<td>Recent Development Results in Russia of Megawatt Power Gyrotrons for Plasma Fusion Installations</td>
</tr>
<tr>
<td></td>
<td>Monday am</td>
<td>Albajar, F.</td>
<td>The European 2 MW gyrotron for ITER</td>
</tr>
<tr>
<td></td>
<td>Posters I</td>
<td>Gantenbein, G.</td>
<td>Progress in stable operation of high power gyrotrons</td>
</tr>
<tr>
<td></td>
<td>Poster II</td>
<td>Jin, J.</td>
<td>Improved Design of a Quasi-Optical Mode Converter for the Coaxial-Cavity ITER Gyrotron</td>
</tr>
</tbody>
</table>

EC-16 Sanya, China: ITER EC System 13 April 2016 M Henderson