Vacancies

Select a filter criteria (optional).
Internship

The Solar Fuels division at DIFFER researches methods to produce synthetic fuels efficiently using renewable sources of electricity. Chemical conversion using electricity is considered as a viable method for storage and transport of renewably generated energy and a pathway towards integrating sustainable electricity into the chemical industry.

In the PSN group we are interested in the strong interaction between light and matter. This is a quickly evolving field of research in which new materials, experimental techniques and theories are realized continuously. In our group, we have developed a unique near-field microscope that can detect and analyse radiation in the deep infrared region of the electromagnetic spectrum, i.e., the terahertz (THz) frequency range. This region holds great promise for applications in non-invasive testing, imaging and spectroscopy as well as high speed wireless communication.

PhD position

The main focus of the project is to use machine-learning (ML) methods to predict the properties of new energy storage materials. You  will work as part of an international team of researchers working on nanoscale computational modeling of materials at the CCER (Center for Computational Energy Research, www.ccer.nl), DIFFER. The project will be carried out under the supervision of Dr. Süleyman Er (DIFFER and CCER).

Internship

Metal nanoparticles are used in a wide range of applications, from catalysis, to advanced solar cells, photo - thermal cancer therapy, and medical imaging [1] . One of the most striki ng features of metal nanoparticles is their unique interaction with light, leading to strong absorption and reflection in the visible range . Such strong interaction is responsible for a variety of interesting effects, from the generation of non - equilibrium charge carriers to the localiz ed heating of the nanoparticle surrounding .

PhD position

The PhD project involves physics of magnetically confined plasma for fusion energy, and control theory. In a magnetic confinement fusion reactor it may prove desirable to operate at the minimum power that allows for so-called H-mode energy confinement. At lower power a bifurcation occurs: sudden fall-back to poorer L-mode energy confinement and hence a drop in fusion power. A number of physics processes have been identified that could play a role in these transitions.

Postdoc position

Magnum-PSI is the only device that can currently study plasma-wall interactions under plasma and neutral conditions matching those expected in the ITER divertor. This is not only important for testing divertor materials, but also for understanding and reliably extrapolating to the basic plasma processes in future fusion devices such as ITER. However, due to the fundamentally different magnetic configurations, plasma conditions in reactor divertors cannot be derived from Magnum-PSI experiments alone.

Internship

Strong-light matter coupling has emerged as a major cross-disciplinary field of study over recent years. This regime was originally constrained to the realm of low-temperature studies, however, extensions to room temperature through advances in the fabrication of nanophotonic structures have opened the door for numerous new research lines. In this manner, strong-coupling has been proposed as a means for modifying the internal physics of condensed matter systems, with great potential for light-harvesting, energy-transport and catalysis.

Internship

Strong-light matter coupling has emerged as a major cross-disciplinary field of study over recent years. This regime was originally constrained to the realm of low-temperature studies, however, extensions to room temperature through advances in the fabrication of nanophotonic structures have opened the door for numerous new research lines.

Internship

Two dimensional (2D) materials such as graphene, black phosphorous, and transition metal dichalcogenides (TMDs) exhibit fascinating physical properties due to their specific band structure and reduced dimensionality. In recent years, TMDs (MX2, where M = Mo, W and X = S, Se) particularly are of much interest from a fundamental point of view but they also provide an excellent platform for ultrathin optoelectronic and photonic devices.

Internship

The discovery of new energy materials is becoming a large-scale challenge that is far beyond the reach of experimentation but also stretching the limits of conventional computation. At DIFFER; we are working on to improve the speed and the prediction power of computation for the discovery of new solar energy conversion and energy storage materials.

Pages