DIFFER

A. Bieberle-Hütter

First name
A.
Last name
Bieberle-Hütter
ORCID
0000-0001-8794-9312
Kajita, S. ., & Bieberle-Hütter, A. . (2024). Low onset potential for oxygen evolution reaction on hematite electrodes processed with He plasma irradiation. International Journal of Hydrogen Energy, 57, 1118-1125. https://doi.org/10.1016/j.ijhydene.2024.01.110 (Original work published 2024)
Prasad, N. ., Rohnke, M. ., Verheijen, M. ., Sturm, J. ., Hofmann, J. ., Hensen, J. ., & Bieberle-Hütter, A. . (2023). Role of Excess Bi on the Properties and Performance of BiFeO3 Thin-Film Photocathodes. ACS Applied Energy Materials, 6(24), 12237-12248. https://doi.org/10.1021/acsaem.3c01926 (Original work published 2023)
Liang, Q. ., Brocks, G. ., & Bieberle-Hütter, A. . (2023). First-principles study of the magnetic exchange forces between the RuO2(110) surface and Fe tip. ChemPhysChem, 24(5), e202200429. https://doi.org/10.1002/cphc.202200429 (Original work published 2023)
Kajita, S. ., Eda, T. ., Feng, S. ., Tanaka, H. ., Bieberle-Hütter, A. ., & Ohno, N. . (2023). Increased photoelectrochemical performance of vanadium oxide thin film by helium plasma treatment with auxiliary molybdenum deposition. Advanced Energy and Sustainability Research, 4(3), 2200141. https://doi.org/10.1002/aesr.202200141
van den Boorn, B. F., van Berkel, M. ., & Bieberle-Hütter, A. . (2023). Variance-Based Global Sensitivity Analysis: A Methodological Framework and Case Study for Microkinetic Modeling. Advanced Theory and Simulations, 6(10), 2200615. https://doi.org/10.1002/adts.202200615
Feng, S. ., Kajita, S. ., Higashi, M. ., Bieberle-Hütter, A. ., Yoshida, T. ., & Ohno, N. . (2022). Photoelectrochemical properties of plasma-induced nanostructured tungsten oxide. Applied Surface Science, 580, 151979. https://doi.org/10.1016/j.apsusc.2021.151979 (Original work published 2022)
Liang, Y. ., Bieberle-Hütter, A. ., & Brocks, G. . (2022). Anti-Ferromagnetic RuO2: A Stable and Robust OER Catalyst over a Large Range of Surface Terminations. Journal of Physical Chemistry C, 126(3), 1337–1345. https://doi.org/10.1021/acs.jpcc.1c08700 (Original work published 2022)
Samanta, B. ., Morales-Garcia, A. ., Illas, F. ., Goga, N. ., Anta, J. ., Calero, S. ., … Toroker, C. . (2022). Challenges of modeling nanostructured materials for photocatalytic water splitting. Chemical Society Reviews, 51(9), 3794-3818. https://doi.org/10.1039/d1cs00648g (Original work published 2022)
George, K. ., van Berkel, M. ., Zhang, X. Q., Sinha, R. ., & Bieberle-Hütter, A. . (2022). Correction to ’Impedance Spectra and Surface Coverages Simulated Directly from the Electrochemical Reaction Mechanism: A Nonlinear State Space Approach, 2019’. Journal of Physical Chemistry C, 126(26), 10947–10948. https://doi.org/10.1021/acs.jpcc.2c03604 (Original work published 2022)
Sinha, V. ., Sun, D. ., Meijer, E. ., Vlugt, T. H., & Bieberle-Hütter, A. . (2021). A Multiscale Modelling Approach to Elucidate the Mechanism of the Oxygen Evolution Reaction at the Hematite-Water Interface. Faraday Discussions, 229, 89-107. https://doi.org/10.1039/C9FD00140A (Original work published 2021)