DIFFER
DIFFER Publication

Numerical simulations of homologous coronal mass ejections in the solar wind

Author
Abstract

Context. Coronal mass ejections (CMEs) are enormous expulsions of magnetic flux and plasma from the solar corona. Most scientists agree that a coronal mass ejection is the sudden release of magnetic free energy stored in a strongly stressed field. However, the exact reason for this sudden release is still highly debated. Aims. In an initial multiflux system in steady state equilibrium, containing a pre-eruptive region consisting of three arcades with alternating magnetic flux polarity, we study the initiation and early evolution properties of a sequence of CMEs by shearing a region slightly larger than the central arcade. Methods. We solve the ideal magnetohydrodynamics (MHD) equations in an axisymmetrical domain from the solar surface up to 30 R-circle dot. The ideal MHD equations are advanced in time over a non uniform grid using a modified version of the Versatile Advection Code (VAC). Results. By applying shearing motions on the solar surface, the magnetic field is energised and multiple eruptions are obtained. Magnetic reconnection first opens the overlying field and two new reconnections sites set in on either side of the central arcade. After the disconnection of the large helmet top, the system starts to restore itself but cannot return to its original configuration as a new arcade has already started to erupt. This process then repeats itself as we continue shearing. Conclusions. The simulations reported in the present paper, demonstrate the ability to obtain a sequence of CMEs by shearing a large region of the central arcade or by shearing a region that is only slightly larger than the central arcade. We show, be it in an axisymmetric configuration, that the breakout model can not only lead to confined eruptions but also to actual coronal mass ejections provided the model includes a realistic solar wind model.

Year of Publication
2009
Journal
Astronomy & Astrophysics
Volume
501
Number
3
Number of Pages
1123-1130
Date Published
Jul
Type of Article
Article
ISBN Number
0004-6361
Accession Number
ISI:000268292200025
URL
<Go to ISI>://000268292200025
PId
fe6ef73ca4fc806f4d2ff62ad3bcf1f0
Alternate Journal
Astron. Astrophys.
Journal Article
Download citation