Vacancies

Select a filter criteria (optional).
Postdoc position

Based on very promising preliminary results, obtained with model low-performance photoanodes, we aim to expand the concept to state-of-the-art photoelectrodes that can be scaled up. The source of our inspiration is the latest conventional PEC cell strategies which however cannot be directly applied in air based PEM-PEC operation.

Postdoc position

This position is part of the M-ERANET project “Multiscale Modeling and Design of Photo-Electrochemical Interfaces” together with TU Delft, Pablo de Olavide University (Spain), and University of Wrocław (Poland). The project is aimed at modeling the electrochemical interface in photo-electrochemical water splitting. Different levels of theory are elaborated by the different partners. This position is shared between DIFFER and TU Delft and focuses on different levels of theory, i.e. atomistic, kinetic Monte Carlo, and continuum modelling.

Postdoc position

Pronounced promotion of chemical conversion processes under the influence of applied electric fields has been demonstrated for catalytic systems (e.g. CO2 conversion; ammonia synthesis from N2 and H2). The development of an in-operando DRIFTS (Diffuse Reflectance Infra-Red Fourier Transform Spectroscopy) cell has allowed the unambiguous identification of surface-bound reaction intermediates. The reaction dynamics conclusively demonstrate that the applied electric field changes the reaction mechanism.

Internship

Evaluating plasmonic heating and hot-charge carrier effects in plasmon-driven syntheses

Postdoc position

This position is part of a recently granted NWO project, entitled CO2SPARE, which is aimed at the valorisation of CO2 in biogas. This project is executed jointly with the Non-equilibrium Fuel Conversion (NFC) group of DIFFER. It entails fundamental studies of the reverse Boudouard reaction, in support of an overall process involving pyrolysis of methane follows by reaction of CO2 with the carbon thus formed.

Internship

In the PSN group we are interested in the strong interaction between light and matter. This is a quickly evolving field of research in which new materials, experimental techniques and theories are realized continuously. In our group, we have developed a unique near-field microscope that can detect and analyse radiation in the deep infrared region of the electromagnetic spectrum, i.e., the terahertz (THz) frequency range. This region holds great promise for applications in non-invasive testing, imaging and spectroscopy as well as high speed wireless communication.

Postdoc position

Through a joint collaboration Exergy Storage (SME) and DIFFER aim with a consortium of partners to realize a prototype battery operating in this intermediate temperature window suitable for residential storage unit through the project NaSTOR. In this context, the role of DIFFER is particularly to focus on the challenges related with the NaSBs cathodic compartment.

PhD position

Research: Both the heat exhaust problem (how to remove heat from the core) and core transport (how to reduce heat losses) in nuclear fusion reactors are governed by sets of coupled partial differential equations (PDEs). Hence, for improving both the core plasma and reducing the heat exhaust these coupled PDEs play a crucial role and need to be modelled, estimated, and controlled.

Internship

Strong-light matter coupling has emerged as a major cross-disciplinary field of study over recent years. This regime was originally constrained to the realm of low-temperature studies, however, extensions to room temperature through advances in the fabrication of nanophotonic structures have opened the door for numerous new research lines. In this manner, strong-coupling has been proposed as a means for modifying the internal physics of condensed matter systems, with great potential for light-harvesting, energy-transport and catalysis.

Internship

Strong-light matter coupling has emerged as a major cross-disciplinary field of study over recent years. This regime was originally constrained to the realm of low-temperature studies, however, extensions to room temperature through advances in the fabrication of nanophotonic structures have opened the door for numerous new research lines.

Pages