Vacancies

Select a filter criteria (optional).
Postdoc position

Scientific aim: This position is part of the strategic programme "Taming the Flame", which aims to enhance our understanding of the physics of power exhaust of tokamak fusion reactors, and to develop advanced control strategies for high-performance, low wall load operation. Recent developments have opened a new path to power exhaust: to use a liquid metal (lithium) based wall which strongly evaporates, forming a vapour cloud in front of the wall which cools and redirects the heat, ultimately preventing any damage.

Internship

Modelling non-equilibrium plasmas for CO2 activation is very challenging due to the complex network of chemical reactions and different timescales for the physical and chemical processes involved. An accurate description of electron kinetics is fundamental to calculate chemical rate coefficients and transport parameters that are used to describe the plasma discharge. In the CPPC group, we develop fast and accurate computational approaches for electron kinetics. This MSc project focuses on the application of those approaches to CO2 plasmas investigated experimentally at DIFFER.

Internship

The discovery of new energy materials is becoming a large-scale challenge that is far beyond the reach of experimentation but also stretching the limits of conventional computation. At DIFFER; our AMD research group is working on to improve the speed and the prediction capability of computational methods for the discovery of new energy materials. We use machine learning (ML), which is essentially a method to make predictions and to optimize a performance criterion based on the available example data.

Internship

The computational MSc thesis project is part of a theory-experiment collaboration effort between DIFFER and our industrial partner. The overall aim is to understand the fundamentals of new Fe-based model catalysts, and to tune them further for the Fischer-Tropsch (FT) synthesis of fuels using renewable energy. The fundamental aim is to know how Fe metal layers grow on different Cu metal substrates and how these newly grown Fe layers behave during the adsorption of atomic and molecular species, such as H, C, O, and CO, which are all needed for the synthesis of commercially valuable fuels.

Technical support

Om de unieke experimenten te kunnen doen is elektronica onmisbaar bij DIFFER. We zijn daarom op zoek naar een

Internship

Evaluating plasmonic heating and hot-charge carrier effects in plasmon-driven syntheses

Postdoc position

This position is part of a recently granted NWO project, entitled CO2SPARE, which is aimed at the valorisation of CO2 in biogas. This project is executed jointly with the Non-equilibrium Fuel Conversion (NFC) group of DIFFER. It entails fundamental studies of the reverse Boudouard reaction, in support of an overall process involving pyrolysis of methane follows by reaction of CO2 with the carbon thus formed.

Internship

Our future energy infrastructure will need ways of efficiently converting, transporting and storing electricity from sustainable but fluctuating sources. One approach uses sustainable electricity for the reverse combustion of atmospheric CO2 into so-called solar fuels, thereby converting electricity into the chemical bonds of high-density fuels. DIFFER pursues plasma-assisted conversion of CO2 into CO and O2 as an exciting new approach to recycling carbon dioxide into fuels, thereby closing the carbon cycle and eliminating the need for fossil fuels.

Internship

Photo-electrochemical (PEC) solar fuel conversion is one of the most promising techniques to convert solar energy directly into its most versatile form of energy, a fuel. However, the efficiency is still low and degradation too high. We have several open BSc/MSc/internship projects for both experiments and modeling & simulation.