DIFFER
DIFFER Publication

Gas-phase study of new organozinc reagents by IRMPD-spectroscopy, computational modelling and tandem-MS

Label Value
Author
Abstract

An extensive set of organozinc iodides, useful for Negishi-type cross-coupling reactions, are investigated as respective cations after formal loss of iodide in the gas phase. Firstly, two new alkylzinc compounds derived from Tyrosine (Tyr) and Tryptophan (Trp) are closely examined. Secondly, the influence of specific protecting groups on the subtle balance between intra-and intermolecular coordination of zinc in these reagents is probed through trifluoroacetyl (TFA)-derivatized alkylzinc compounds. Finally, the influence of the strongly coordinating bidentate ligand N,N,N',N'-tetramethylethylenediamine (TMEDA) on the structure of alkylzinc cations is further explored in order to better understand the stability of the respective complexes towards water. A combination of electrospray (ESI)-MS/MS, accurate ion mass measurements, infrared multiple-photon dissociation (IRMPD) spectroscopy and computational modelling allowed the full characterisation of all dimethylformamide (DMF)-solvated and TMEDA-coordinated alkylzinc cations in the gas phase. The calculations indicate that the zinc cation in gas-phase alkylzinc-DMF or TMEDA-complex ions preferentially adopts a tetrahedral coordination sphere with four ligands. Additionally, conformers with only three binding partners bound to zinc but with effectively combined hydrogen-bond interactions are also found. Collision induced dissociation (CID) patterns demonstrate that the zinc-DMF interaction in tetrahedral four-coordinate mono-DMF-zinc complex ions as well as the interaction between TMEDA and zinc in the corresponding complex ions is even stronger than typical covalent bonds. In most cases, all major features of the IRMPD spectra are consistent with only a single major isomer, allowing secured identification and assignment.

Year of Publication
2011
Journal
Physical Chemistry Chemical Physics
Volume
13
Number
29
Number of Pages
13255-13267
Type of Article
Article
ISBN Number
1463-9076
Accession Number
WOS:000292981600016
URL
PId
cd85b13fe4f248ef083eb41ac14c270d
Alternate Journal
Phys. Chem. Chem. Phys.
Journal Article
Download citation