Select a filter criteria (optional).

Our future energy infrastructure will need ways of efficiently converting, transporting and storing electricity from sustainable but fluctuating sources. One approach uses sustainable electricity for the reverse combustion of atmospheric CO2 into so-called solar fuels, thereby converting electricity into the chemical bonds of high-density fuels. DIFFER pursues plasma-assisted conversion of CO2 into CO and O2 as an exciting new approach to recycling carbon dioxide into fuels, thereby closing the carbon cycle and eliminating the need for fossil fuels.


Photo-electrochemical (PEC) solar fuel conversion is one of the most promising techniques to convert solar energy directly into its most versatile form of energy, a fuel. However, the efficiency is still low and degradation too high. We have several open BSc/MSc/internship projects for both experiments and modeling & simulation.