Title | A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear |
Publication Type | Journal Article |
Year of Publication | 2011 |
Authors | P. Mantica, C. Angioni, C. Challis, G. Colyer, L. Frassinetti, N. Hawkes, T. Johnson, M. Tsalas, P.C de Vries, J. Weiland, B. Baiocchi, M.NA Beurskens, A.CA Figueiredo, C. Giroud, J. Hobirk, E. Joffrin, E. Lerche, V. Naulin, A.G. Peeters, A. Salmi, C. Sozzi, D. Strintzi, G. Staebler, T. Tala, D. Van Eester, T. Versloot |
Journal | Physical Review Letters |
Volume | 107 |
Issue | 13 |
Number | 13 |
Pagination | 135004 |
Date Published | Sep |
Type of Article | Article |
ISBN Number | 0031-9007 |
Keywords | MODES, THERMAL TRANSPORT, TRANSPORT BARRIERS, TURBULENCE SIMULATIONS |
Abstract | New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. |
URL | http://purl.tue.nl/11399973048620600.pdf |
DOI | 10.1103/PhysRevLett.107.135004 |
Division | FP |
Department | PDG |
PID | e071481b46251293c570437edddbc5ab |
Alternate Title | Phys. Rev. Lett. |
Label | OA |
Go back one page.