Overview of ASDEX Upgrade results

TitleOverview of ASDEX Upgrade results
Publication TypeJournal Article
Year of Publication2011
AuthorsA. Kallenbach, J. Adamek, L. Aho-Mantila, S. Akaslompolo, C. Angioni, C.V Atanasiu, M. Balden, K. Behler, E. Belonohy, A. Bergmann et al.
JournalNuclear Fusion
Volume51
Issue9
Number9
Pagination094012
Date PublishedSep
Type of ArticleArticle
ISBN Number0029-5515
KeywordsPHYSICS, REFLECTOMETRY, TOKAMAK
Abstract

The ASDEX Upgrade programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. After the finalization of the tungsten coating of the plasma facing components, the re-availability of all flywheel-generators allowed high-power operation with up to 20 MW heating power at I(p) up to 1.2 MA. Implementation of alternative ECRH schemes (140 GHz O2- and X3-mode) facilitated central heating above n(e) = 1.2 x 10(20) m(-3) and low q(95) operation at B(t) = 1.8 T. Central O2-mode heating was successfully used in high P/R discharges with 20 MW total heating power and divertor load control with nitrogen seeding. Improved energy confinement is obtained with nitrogen seeding both for type-I and type-III ELMy conditions. The main contributor is increased plasma temperature, no significant changes in the density profile have been observed. This behaviour may be explained by higher pedestal temperatures caused by ion dilution in combination with a pressure limited pedestal and hollow nitrogen profiles. Core particle transport simulations with gyrokinetic calculations have been benchmarked by dedicated discharges using variations of the ECRH deposition location. The reaction of normalized electron density gradients to variations of temperature gradients and the T(e)/T(i) ratio could be well reproduced. Doppler reflectometry studies at the L-H transition allowed the disentanglement of the interplay between the oscillatory geodesic acoustic modes, turbulent fluctuations and the mean equilibrium E x B flow in the edge negative E(r) well region just inside the separatrix. Improved pedestal diagnostics revealed also a refined picture of the pedestal transport in the fully developed H-mode type-I ELM cycle. Impurity ion transport turned out to be neoclassical in between ELMs. Electron and energy transport remain anomalous, but exhibit different recovery time scales after an ELM. After recovery of the pre-ELM profiles, strong fluctuations develop in the gradients of n(e) and T(e). The occurrence of the next ELM cannot be explained by the local current diffusion time scale, since this turns out to be too short. Fast ion losses induced by shear Alfven eigenmodes have been investigated by time-resolved energy and pitch angle measurements. This allowed the separation of the convective and diffusive loss mechanisms.

DOI10.1088/0029-5515/51/9/094012
Division

FP

Department

PDG

PID

a193177a90d5b600862ca1e40bcc67af

Alternate TitleNucl. Fusion

Go back one page.