First scenario development with the JET new ITER-like wall

TitleFirst scenario development with the JET new ITER-like wall
Publication TypeJournal Article
Year of Publication2014
AuthorsE. Joffrin, M. Baruzzo, M. Beurskens, C. Bourdelle, S. Brezinsek, J. Bucalossi, P. Buratti, G. Calabro, C.D Challis, M. Clever, J.W Coenen, E. Delabie, R. Dux, P. Lomas, E. de la Luna, P. de Vries, J. Flanagan, L. Frassinetti, D. Frigione, C. Giroud, M. Groth, N.C Hawkes, J. Hobirk, M. Lehnen, G. Maddison, J. Mailloux, C.F Maggi, G. Matthews, M. Mayoral, A. Meigs, R. Neu, I. Nunes, T. Puetterich, F. Rimini, M. Sertoli, B. Sieglin, A.C.C. Sips, G.J van Rooij, I. Voitsekhovitch, JET-EFDA Contributors
JournalNuclear Fusion
Date PublishedJan
ISBN Number0029-5515

In the recent JET experimental campaigns with the new ITER-like wall (JET-ILW), major progress has been achieved in the characterization and operation of the H-mode regime in metallic environments: (i) plasma breakdown has been achieved at the first attempt and X-point L-mode operation recovered in a few days of operation; (ii) stationary and stable type-I ELMy H-modes with beta(N) similar to 1.4 have been achieved in low and high triangularity ITER-like shape plasmas and are showing that their operational domain at H = 1 is significantly reduced with the JET-ILW mainly because of the need to inject a large amount of gas (above 10(22) Ds(-1)) to control core radiation; (iii) in contrast, the hybrid H-mode scenario has reached an H factor of 1.2-1.3 at beta(N) of 3 for 2-3 s; and, (iv) in comparison to carbon equivalent discharges, total radiation is similar but the edge radiation is lower and Z(eff) of the order of 1.3-1.4. Strong core radiation peaking is observed in H-mode discharges at a low gas fuelling rate (i. e. below 0.5 x 10(22) Ds(-1)) and low ELM frequency (typically less than 10 Hz), even when the tungsten influx from the diverter is constant. High-Z impurity transport from the plasma edge to the core appears to be the dominant factor to explain these observations. This paper reviews the major physics and operational achievements and challenges that an ITER-like wall configuration has to face to produce stable plasma scenarios with maximized performance.







Alternate TitleNucl. Fusion

Go back one page.