Permeation of supercritical CO2 through dense polymeric membranes

TitlePermeation of supercritical CO2 through dense polymeric membranes
Publication TypeJournal Article
Year of Publication2019
AuthorsA. Shamu, M. Dunnewold, H. Miedema, Z. Borneman, K. Nijmeijer
JournalJournal of Supercritical Fluids
Volume144
Pagination63-70
Date Published02/2019
Abstract

Supercritical carbon dioxide (scCO2) is used in the food industry as a water-extracting drying agent. Once saturated with water, the scCO2 needs to be regenerated. A promising way of drying scCO2 is by using H2O permeable membranes. Ideally, these membranes demonstrate low CO2 permeability. Here, we investigated the CO2 permeability of three types of dense membranes, Nafion, Natural Rubber and PDMS, of which the latter in more detail because of its ease of handling. The experimental conditions, temperature and pressure, resulting in minimum CO2 permeability (=losses) were explored. Even though the absolute CO2 permeability depends on the intrinsic membrane material properties, its trend with increasing feed pressure is defined by the (supercritical) behavior of CO2, notably its density as a function of temperature and pressure. The data points to transitions within the supercritical regime, from the gaseous-like supercritical state to the liquid-like supercritical state, graphically visualized by the Widom line for CO2 density. Sorption measurements with PDMS membranes confirm this behavior that follows the diffusion-solution theory. In the gaseous state, the (normalized) permeability follows the (normalized) solubility, indicating a constant CO2 diffusivity. With increasing pressure and when entering the liquid-like (supercritical) regime, the diffusivity drops, resulting in a (normalized) permeability that starts to lag behind the (normalized) solubility.

DOI10.1016/j.supflu.2018.10.009
Division

MaSF

Department

MaSF-E

PID

48239a6841d183508e9f34cc37332436

Alternate TitleJ. Supercrit. Fluid.

Go back one page.