DIFFER

A. J. Wolf

First name
A.
Middle name
J.
Last name
Wolf
Groen, P. W. C., Bongers, W. A., Janssen, J. F., Righart, T. W. H., van de Steeg, A. W., Wolf, A. J., … Peeters, F. J. J. (2025). Modelling forward vortex flow in a microwave plasma. Chemical Engineering Journal, 503, 158072. https://doi.org/10.1016/j.cej.2024.158072 (Original work published 2025)
Tadayon Mousavi, S., Carbone, E., Wolf, A. J., Bongers, W. A., & van Dijk, J. (2021). Two-temperature balance equations implementation, numerical validation and application to H2O-He microwave induced plasmas. Plasma Sources Science and Technology, 30(7), 075007. https://doi.org/10.1088/1361-6595/ac0a44
Viegas, P., Vialetto, L., van de Steeg, A. W., Wolf, A. J., Bongers, W. A., van Rooij, G. J., … Peeters, F. J. J. (2021). Resolving discharge parameters from atomic oxygen emission. Plasma Sources Science and Technology, 30(6), 065022. https://doi.org/10.1088/1361-6595/ac04bd
Wolf, A. J., Righart, T. W. H., Peeters, F. J. J., Bongers, W. A., & van de Sanden, M. C. M. (2020). Implications of thermo-chemical instability on the contracted modes in CO2 microwave plasmas. Plasma Sources Science and Technology, 29(2), 025005. https://doi.org/10.1088/1361-6595/ab5eca
Wolf, A. J. (2020). Thermal aspects of CO2 conversion in the vortex-stabilized microwave plasma (Eindhoven University of Technology). Eindhoven University of Technology, Eindhoven, Netherlands. Retrieved from https://research.tue.nl/en/publications/thermal-aspects-of-co2-conversion-in-the-vortex-stabilized-microw (Original work published)
Wolf, A. J., Peeters, F. J. J., Groen, P. W. C., Bongers, W. A., & van de Sanden, M. C. M. (2020). CO2 Conversion in Nonuniform Discharges: Disentangling Dissociation and Recombination Mechanisms. Journal of Physical Chemistry C, The , 124(31), 16806-16819. https://doi.org/10.1021/acs.jpcc.0c03637 (Original work published 2020)
Viegas, P., Vialetto, L., Wolf, A. J., Peeters, F. J. J., Groen, P. W. C., Righart, T. W. H., … Diomede, P. (2020). Insight into contraction dynamics of microwave plasmas for CO2 conversion from plasma chemistry modelling. Plasma Sources Science and Technology, 29(10), 105014. https://doi.org/10.1088/1361-6595/abb41c
Groen, P. W. C., Wolf, A. J., Righart, T. W. H., van de Sanden, M. C. M., Peeters, F. J. J., & Bongers, W. A. (2019). Numerical model for the determination of the reduced electric field in a CO2 microwave plasma derived by the principle of impedance matching. Plasma Sources Science and Technology, 28(7), 075016. https://doi.org/10.1088/1361-6595/ab1ca1
Wolf, A. J., Righart, T. W. H., Peeters, F. J. J., Groen, P. W. C., van de Sanden, M. C. M., & Bongers, W. A. (2019). Characterization of the CO2 microwave plasma based on the phenomenon of skin-depth-limited contraction. Plasma Sources Science and Technology, 28(11), 115022. https://doi.org/10.1088/1361-6595/ab4e61
Peeters, F., Hendrickx, H. J. L., van de Steeg, A. W., Righart, T. W. H., Wolf, A. J., van Rooij, G. J., … van de Sanden, M. C. M. (2019). Chemiluminescence as a diagnostic tool in CO2 microwave plasma. In ISPC 2019, 24th International Symposium on Plasma Chemistry (p. 318). Naples, Italy. Retrieved from https://www.ispc-conference.org/ispcproc/ispc24/318.pdf (Original work published)