DIFFER
DIFFER Publication

Infrared multiple photon dissociation spectroscopy of protonated histidine and 4-phenyl imidazole

Label Value
Author
Abstract

The gas-phase structures of protonated histidine (His) and the side-chain model, protonated 4-phenyl imidazole (PhIm), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by the free electron laser FELIX. To identify the structures present in the experimental studies, the measured IRMPD spectra are compared to spectra calculated at a B3LYP/6–311+G(d,p) level of theory. Relative energies of various conformers are provided by single point energy calculations carried out at the B3LYP, B3P86, and MP2(full) levels using the 6–311+G(2d,2p) basis set. On the basis of these experiments and calculations, the IRMPD action spectrum for H+(His) is characterized by a mixture of [Nπ,Nα] and [Nπ,CO] conformers, with the former dominating. These conformers have the protonated nitrogen atom of imidazole adjacent to the side-chain (Nπ) hydrogen bonding to the backbone amino nitrogen (Nα) and to the backbone carbonyl oxygen, respectively. Comparison of the present results to recent IRMPD studies of protonated histamine, the radical His+ cation, H+(HisArg), H22+(HisArg), and M+(His), where M+ = Li+, Na+, K+, Rb+, and Cs+, allows evaluation of the vibrational motions associated with the observed bands.

Year of Publication
2012
Journal
International Journal of Mass Spectrometry
Volume
330–332
Number of Pages
6 - 15
URL
DOI
PId
e3948e4f85009dd5fbc027d18325eda6
Alternate Journal
Int. J. Mass Spectrom.
Journal Article
Download citation