DIFFER
DIFFER Publication

CO and byproduct formation during CO2 reduction in dielectric barrier discharges

Author
Abstract

The dissociation of CO2 and the formation of CO, O3, and O2 were studied in a dielectric barrier discharge (DBD) at atmospheric pressure by means of ex-situ infrared absorption spectroscopy. CO mixing ratios of 0.1%–4.4% were determined for specific injected energies between 0.1 and 20 eV per molecule (0.3–70 kJ/l). A lower limit of the gas temperature of 320–480 K was estimated from the wall temperature of the quartz reactor as measured with an infrared camera. The formation of CO in the DBD could be described as function of the total number of transferred charges during the residence time of the gas in the active plasma zone. An almost stoichiometric CO:O2 ratio of 2:1 was observed along with a strongly temperature dependent O3 production up to 0.075%. Although the ideal range for an efficient CO2 dissociation in plasmas of 1 eV per molecule for the specific injected energy was covered, the energy efficiency remained below 5% for all conditions. The present results indicate a reaction mechanism which is initiated by electron impact processes followed by charge transfer reactions and non-negligible surface enhanced O and CO recombination. While electron-driven CO2 dissociation is relatively energy inefficient by itself, fast O recombination and the low gas temperatures inhibit the synergistic reuse of atomic oxygen in a secondary CO2 + O dissociation step.

Year of Publication
2014
Journal
Journal of Applied Physics
Volume
116
Number
12
Issue
12
Number of Pages
123303
DOI
10.1063/1.4896132
PId
f08f74285c41cb6559ce740c50a3a3d3
Alternate Journal
J. Appl. Phys.
Journal Article
Download citation