DIFFER
DIFFER Publication

Deuterium retention and surface modifications of nanocrystalline tungsten films exposed to high-flux plasma

Author
Abstract

Abstract Deuterium retention studies are presented for nanostructured tungsten films exposed to high-flux deuterium plasmas. Thin tungsten films of ∼1 μm thickness were deposited with pulsed laser deposition (PLD) on bulk tungsten. Surface modifications were studied with scanning electron microscopy and deuterium retention with thermal desorption spectroscopy. Three types of PLD films with different densities and crystallinity were studied after exposure to deuterium plasmas. The surface temperature ranged from about 460 K at the periphery to about 520 K in the centre of the targets. The films withstand the intense plasma exposure well and maintain their overall integrity. An increase of deuterium retention is observed with decreasing tungsten density and crystallite size. We found that the filling of these thin films with deuterium is significantly faster than for pre-damaged polycrystalline tungsten. We observed formation of micrometer-sized blisters as well as structures on the nanometer scale, both depending on the layer type.

Year of Publication
2015
Journal
Journal of Nuclear Materials
Volume
463
Issue
Aug
Number of Pages
989 - 992
DOI
10.1016/j.jnucmat.2014.11.025
PId
fae973553f44ad6e39037629e7de27a5
Alternate Journal
J. Nucl. Mater.
Journal Article
Download citation