Separation of transport in slow and fast time-scales using modulated heat pulse experiments (hysteresis in flux explained)
Author | |
Abstract |
Old and recent experiments show that there is a direct response to the heating power of transport observed in modulated ECH experiments both in tokamaks and stellarators. This is most apparent for modulated experiments in the Large Helical Device (LHD) and in Wendelstein 7 advanced stellarator (W7-AS). In this paper we show that: 1) This power dependence can be reproduced by linear models and as such hysteresis (in flux) has no relationship to hysteresis as defined in the literature; 2) Observations of "hysteresis" (in flux) and a direct response to power can be perfectly reproduced by introducing an error in the estimated deposition profile as long as the errors redistribute the heat over a large radius; 3) Non-local models depending directly on the heating power can also explain the experimentally observed Lissajous curves (hysteresis); 4) How non-locality and deposition errors can be recognized in experiments and how they affect estimates of transport coefficients; 5) That non-linear-non-local transport models offer a path in discerning deposition errors from non-local fast transport components otherwise experimentally indistinguishable. To show all this, transport needs to be analyzed by separating the transport in a slow (diffusive) time-scale and a fast (heating/non-local) time-scale, which can only be done in the presence of perturbations. (DOI dataset, OA: 10.4121/uuid:5fcf4247-da0e-4119-adcd-fc90b85b7f03) |
Year of Publication |
2018
|
Journal |
Nuclear Fusion
|
Volume |
58
|
Issue |
10
|
Number of Pages |
106042
|
DOI |
10.1088/1741-4326/aadc17
|
Dataset |
https://dx.doi.org/10.4121/uuid:5fcf4247-da0e-4119-adcd-fc90b85b7f03
|
PId |
29d19fbcbf73c33399d56c66632d0a33
|
Alternate Journal |
Nucl. Fusion
|
Label |
OA
|
Journal Article
|
|
Download citation |