DIFFER
DIFFER Publication

Effect of anisotropic scattering for rotational collisions on electron transport parameters in CO

Author
Abstract

The role of anisotropic scattering in rotational collisions of electrons with CO molecules is investigated numerically with Monte Carlo (MC) simulations and with calculations using the Lisbon KInetics two-term Boltzmann solver (LoKI-B). The study adopts integral cross sections taken from the IST-Lisbon database of LXCat or extracted from Biagi's code Magboltz v11.10. Different angular scattering models for rotational collisions are implemented and compared in MC simulations, and a novel anisotropic scattering model is derived from the dipole-Born differential cross sections, to describe the strongly forward-peaked nature of rotational collisions. This model is also implemented in LoKI-B, to describe the anisotropic inelastic/superelastic scattering in dipole rotational collisions, using coherent expressions for the corresponding integral and momentum transfer cross sections. The comparison between MC and LoKI-B results shows that the calculation of swarm parameters is more influenced by the choice of the angular scattering model than the adoption of the two-term approximation, yielding deviations up to 50% in the reduced mobility for different angular distributions. The consequences in the swarm derivation of cross sections are also discussed. Finally, it is shown that inclusion of electric-quadrupole interactions, usually neglected in electron swarm studies, can improve the agreement between numerical results and measurements.

Year of Publication
2021
Journal
Plasma Sources Science and Technology
Volume
30
Issue
7
Number of Pages
075001
DOI
10.1088/1361-6595/ac0a4d
PId
3319a15fb30b2e9079192a2fbe91b4ea
Alternate Journal
Plasma Sources Sci. Technol.
Label
OA
Attachment
Journal Article
Download citation