DIFFER
DIFFER Publication

Spin Matters: A Multidisciplinary Roadmap to Understanding Spin Effects in Oxygen Evolution Reaction During Water Electrolysis

Label Value
Author
Abstract
A central challenge in water electrolysis lies with the oxygen evolution reaction (OER) where the formation of molecular oxygen (O2) is hindered by the constraint of angular momentum conservation. While the reactants OH− or H2O are diamagnetic (DM), the O2 product has a paramagnetic (PM) triplet ground state, requiring a change in spin configuration when being formed. This constraint has prompted interest in spin-selective catalysts as a means to facilitate OER. In this context, the roles of magnetism and chirality-induced spin selectivity (CISS) in promoting the OER reaction have recently been investigated through both theoretical and experimental studies. However, pinpointing the key principles and their relative contribution in mediating spin-enhancement remains a significant challenge. This roadmap offers a forward-looking perspective on current experimental trends and theoretical developments in spin-enhanced OER electrocatalysis and outlines strategic directions for integrating incisive experiments and operando approaches with computational modeling to disentangle key mechanisms. By providing a conceptual framework and identifying critical knowledge gaps, this perspective aims to guide researchers toward dedicated experimental and computational studies that will deepen the understanding of spin-induced OER enhancement and accelerate the development of next-generation catalysts.
Year of Publication
2025
Journal
Advanced Energy Materials
Volume
15
Number of Pages
e03556 in press
DOI
PId
4368570b93bcd5af6e73a87edce823e0
Alternate Journal
Adv. Energy Mater.
Label
OA
Journal Article
Download citation