Discriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET

TitleDiscriminating the role of rotation and its gradient in determining ion stiffness mitigation in JET
Publication TypeJournal Article
Year of Publication2013
AuthorsB. Baiocchi, P. Mantica, C. Giroud, T. Johnson, V. Naulin, A. Salmi, T. Tala, M. Tsalas
JournalPlasma Physics and Controlled Fusion
Volume55
Start Page7
Number2
Pagination025010
Date PublishedFeb
Type of ArticleArticle
ISBN Number0741-3335
KeywordsMODE, PLASMAS, SIMULATIONS, TOKAMAKS
Abstract

Starting from recent JET experimental results that show a significant reduction of ion stiffness in the plasma core region due to plasma rotation in the presence of low magnetic shear, an experiment was carried out at JET in order to separate the role of rotation and rotation gradient in mitigating the ion stiffness level. Enhanced toroidal field ripple (up to 1.5%) and external resonant magnetic fields are the two mechanisms used to try and decouple the rotation value from its gradient. In addition, shots with reversed toroidal field and plasma current, yielding counter-current neutral beam injection, were compared with standard co-injection cases. These tools also allowed varying the rotation independently of the injected power. Shots with high rotation gradient are found to maintain their low stiffness level even when the absolute value of the rotation was significantly reduced. Conversely, high but flat rotation yields much less peaked ion temperature profiles than a peaked rotation profile with lower values. This behaviour suggests the rotation gradient as the main player in reducing the ion stiffness level. In addition, it is found that inverting the rotation gradient sign does not suppress its effect on ion stiffness.

URLhttp://www.euro-fusionscipub.org/wp-content/uploads/2014/11/EFDP12017.pdf
DOI10.1088/0741-3335/55/2/025010
Division

FP

Department

PDG

PID

75919026170db40d96cc50334199418d

Alternate TitlePlasma Phys. Control. Fusion
LabelOA

Go back one page.