First principles and integrated modelling achievements: towards fusion power predictions for JET and ITER

TitleFirst principles and integrated modelling achievements: towards fusion power predictions for JET and ITER
Publication TypeJournal Article
Year of Publication2019
AuthorsE. Garcia, R. Dumont, J. Joly, J. Morales, L. Garzotti, T. Bache, Y. Baranov, F. Casson, J. Citrin, A. Ho, C. Challis, K. Kirov, J. Mailloux, S. Saarelma, M. Nocente, B A. Navarro, T. Gorler, D. Gallart, M. Mantsinen
JournalNuclear Fusion
Volume59
Issue8
Pagination086047
Abstract

Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to the on-going JET experimental campaigns in H, D and T by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.

DOI10.1088/1741-4326/ab25b1
Division

FP

Department

IMT

PID

979e9d36956a6fb000f8d9e5060d8989

Alternate TitleNucl. Fusion

Go back one page.