Vacancies

Please note: unless otherwise specified, the internships are only available for students with a nationality of an EU-member state and/or students from a Dutch university.

Select a filter criteria (optional).
Internship

Tungsten is the leading candidate for the plasma-facing wall material of fusion reactors due to its high melting point, high conductivity and low sputtering yield. The tungsten plasma facing components will be subject to extremely high heat and particle loads from the plasma which means that maximum operational temperature will approach the literature recrystallization threshold (t1/2 ~1400 °C), which is based on furnace annealing [1].

Internship

In a previous Master Thesis project a neural network regression was performed of the warm plasma Ordinary mode dispersion relation. In order to extend this work to the eXtraordinary mode, first a thorough analysis of the different mode branches of the X-mode is required. In particular, around the second harmonic resonance the warm plasma dispersion is characterized by a complex interplay between the fast X-mode and the Bernstein mode, which needs to be documented before a neural network regression can be attempted.

Internship

The 2D reduced MHD code RUTH is used to study the linear and nonlinear evolution of (neoclassical) tearing modes. Within this broad range of topics various thesis projects can be developed ranging from the implementation of more efficient numerical schemes to the implementation of additional physics models and effects such as the ion polarization current, cylindrical coordinates and radial asymmetries and the benchmarking of the effects on the nonlinear growth of the mode against the generalized Rutherford equation.

Internship

Evaluating plasmonic heating and hot-charge carrier effects in plasmon-driven syntheses

Internship

In the PSN group we are interested in the strong interaction between light and matter. This is a quickly evolving field of research in which new materials, experimental techniques and theories are realized continuously. In our group, we have developed a unique near-field microscope that can detect and analyse radiation in the deep infrared region of the electromagnetic spectrum, i.e., the terahertz (THz) frequency range. This region holds great promise for applications in non-invasive testing, imaging and spectroscopy as well as high speed wireless communication.

Internship

Strong-light matter coupling has emerged as a major cross-disciplinary field of study over recent years. This regime was originally constrained to the realm of low-temperature studies, however, extensions to room temperature through advances in the fabrication of nanophotonic structures have opened the door for numerous new research lines. In this manner, strong-coupling has been proposed as a means for modifying the internal physics of condensed matter systems, with great potential for light-harvesting, energy-transport and catalysis.

Internship

Strong-light matter coupling has emerged as a major cross-disciplinary field of study over recent years. This regime was originally constrained to the realm of low-temperature studies, however, extensions to room temperature through advances in the fabrication of nanophotonic structures have opened the door for numerous new research lines.

Internship

The discovery of new energy materials is becoming a large-scale challenge that is far beyond the reach of experimentation but also stretching the limits of conventional computation. At DIFFER; we are working on to improve the speed and the prediction power of computation for the discovery of new solar energy conversion and energy storage materials.

Internship

Our future energy infrastructure will need ways of efficiently converting, transporting and storing electricity from sustainable but fluctuating sources. One approach uses sustainable electricity for the reverse combustion of atmospheric CO2 into so-called solar fuels, thereby converting electricity into the chemical bonds of high-density fuels. DIFFER pursues plasma-assisted conversion of CO2 into CO and O2 as an exciting new approach to recycling carbon dioxide into fuels, thereby closing the carbon cycle and eliminating the need for fossil fuels.

Internship

Photo-electrochemical (PEC) solar fuel conversion is one of the most promising techniques to convert solar energy directly into its most versatile form of energy, a fuel. However, the efficiency is still low and degradation too high. We have several open BSc/MSc/internship projects for both experiments and modeling & simulation.