DIFFER

M. C. M. van de Sanden

First name
M.
Middle name
C. M.
Last name
van de Sanden
ORCID
0000-0002-4119-9971
Patel, H., Sharma, R. K., Kyriakou, V., Pandiyan, A., Welzel, S., van de Sanden, M. C. M., & Tsampas, M. N. (2019). Plasma activated electrolysis for cogeneration of nitric oxide and hydrogen from water and nitrogen. ACS Energy Letters, 4(9), 2091–2095. https://doi.org/10.1021/acsenergylett.9b01517 (Original work published 2019)
Liu, Y., Elam, F. M., Zoethout, E., Starostin, S. A., van de Sanden, M. C. M., & de Vries, H. W. (2019). Atmospheric-pressure silica-like thin film deposition using 200 kHz/13.56 MHz dual frequency excitation. Journal of Physics D: Applied Physics, 52(35), 355201. https://doi.org/10.1088/1361-6463/ab269b (Original work published 2019)
Kyriakou, V., Neagu, D., Papaioannou, E. I., Metcalfe, I. S., van de Sanden, M. C. M., & Tsampas, M. N. (2019). Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios. Applied Catalysis B: Environmental, 258, 117950. https://doi.org/10.1016/j.apcatb.2019.117950 (Original work published 2019)
Minea, T., van de Steeg, A. W., Wolf, A. J., da Silva, A. S., Peeters, F. J. J., van den Bekerom, D. C. M., … van Rooij, G. J. (2019). Role of Electron–Ion Dissociative Recombination in CH4 Microwave Plasma on Basis of Simulations and Measurements of Electron Energy. Plasma Chemistry and Plasma Processing, 39(5), 1275–1289. https://doi.org/10.1007/s11090-019-10005-w (Original work published 2019)
Groen, P. W. C., Wolf, A. J., Righart, T. W. H., van de Sanden, M. C. M., Peeters, F. J. J., & Bongers, W. A. (2019). Numerical model for the determination of the reduced electric field in a CO2 microwave plasma derived by the principle of impedance matching. Plasma Sources Science and Technology, 28(7), 075016. https://doi.org/10.1088/1361-6595/ab1ca1
Wolf, A. J., Righart, T. W. H., Peeters, F. J. J., Groen, P. W. C., van de Sanden, M. C. M., & Bongers, W. A. (2019). Characterization of the CO2 microwave plasma based on the phenomenon of skin-depth-limited contraction. Plasma Sources Science and Technology, 28(11), 115022. https://doi.org/10.1088/1361-6595/ab4e61
Neagu, D., Kyriakou, V., Roiban, L., Aouine, M., Tang, C., Caravaca, A., … Tsampas, M. N. (2019). In Situ Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. ACS Nano, 13(11), 12996-13005. https://doi.org/10.1021/acsnano.9b05652
Bogaerts, A., Tu, X., van Rooij, G. J., van de Sanden, M. C. M., North, M., & Styring, P. (2019). Plasma-based CO2 conversion. In Carbon Dioxide Utilization: From Fundamentals to Production Processes (Vol. 2, pp. 585-634). Berlin, Germany: De Gruyter. Retrieved from https://www.degruyter.com/
Peeters, F., Hendrickx, H. J. L., van de Steeg, A. W., Righart, T. W. H., Wolf, A. J., van Rooij, G. J., … van de Sanden, M. C. M. (2019). Chemiluminescence as a diagnostic tool in CO2 microwave plasma. In ISPC 2019, 24th International Symposium on Plasma Chemistry (p. 318). Naples, Italy. Retrieved from https://www.ispc-conference.org/ispcproc/ispc24/318.pdf (Original work published)
Viegas, P., van de Sanden, M. C. M., Longo, S., & Diomede, P. (2019). Self-consistent diffusion approach to CO2 vibrational kinetics. In ISPC 2019, 24th International Symposium on Plasma Chemistry (p. 226). Naples, Italy. Retrieved from https://www.ispc-conference.org/ispcproc/ispc24/226.pdf (Original work published)