Kremers, B. J., Citrin, J., Ho, A., & van de Plassche, K. (2023). Two-step clustering for data reduction combining DBSCAN and k-means clustering. Contributions to Plasma Physics, 63(5-6), 202200177. https://doi.org/10.1002/ctpp.202200177
Ho, A., Citrin, J., Challis, C. D., Bourdelle, C., Casson, F. J., Garcia, J., … Mailloux, J. (2023). Predictive JET current ramp-up modelling using QuaLiKiz-neural-network. Nuclear Fusion, 63(6), 066014. https://doi.org/10.1088/1741-4326/acc083
Ho, A., Citrin, J., Bourdelle, C., Camenen, Y., Casson, F., van de Plassche, K., … JET Contributors,. (2021). Neural network surrogate of QuaLiKiz using JET experimental data to populate training space. Physics of Plasmas, 28(3), 032305. https://doi.org/10.1063/5.0038290
Ho, A. (2021). Development of neural networks towards predict-first plasma modelling (Eindhoven University of Technology). Eindhoven University of Technology, Eindhoven, Netherlands. Retrieved from https://research.tue.nl/en/publications/development-of-neural-networks-towards-predict-first-plasma-model (Original work published)
Van Mulders, S., Felici, F., Sauter, O., Citrin, J., Ho, A., Marin, M., & van de Plassche, K. (2021). Rapid optimization of stationary tokamak plasmas in RAPTOR: demonstration for the ITER hybrid scenario with neural network surrogate transport model QLKNN. Nuclear Fusion, 61(8), 086019. https://doi.org/10.1088/1741-4326/ac0d12
van de Plassche, K. L., Citrin, J., Bourdelle, C., Camenen, Y., Casson, F. J., Dagnelie, V. I., … Van Mulders, S. (2020). Fast modelling of turbulent transport in fusion plasmas using neural networks. Physics of Plasmas, 27(2), 022310. https://doi.org/10.1063/1.5134126