DIFFER

A. Ho

First name
A.
Last name
Ho
ORCID
0000-0001-5107-3531
Kremers, B. J., Citrin, J. ., Ho, A. ., & van de Plassche, K. . (2023). Two-step clustering for data reduction combining DBSCAN and k-means clustering. Contributions to Plasma Physics, 63(5-6), 202200177. https://doi.org/10.1002/ctpp.202200177
Marin, M. ., Citrin, J. ., Giroud, C. ., Bourdelle, C. ., Camenen, Y. ., Garzotti, L. ., … Contributors, J. . (2023). Integrated modelling of Neon impact on JET H-mode core plasmas. Nuclear Fusion, 63(1), 016019. https://doi.org/10.1088/1741-4326/aca469
Ho, A. ., Citrin, J. ., Challis, C. D., Bourdelle, C. ., Casson, F. J., Garcia, J. ., … Mailloux, J. . (2023). Predictive JET current ramp-up modelling using QuaLiKiz-neural-network. Nuclear Fusion, 63(6), 066014. https://doi.org/10.1088/1741-4326/acc083
Mailloux, J. ., Abid, N. ., Abraham, K. ., Abreu, P. ., Adabonyan, O. ., Citrin, J. ., … Zychor, I. . (2022). Overview of JET results for optimising ITER operation. Nuclear Fusion, 62(4), 042026. https://doi.org/10.1088/1741-4326/ac47b4
Ho, A. ., Citrin, J. ., Bourdelle, C. ., Camenen, Y. ., Casson, F. ., van de Plassche, K. ., … Contributors, J. . (2021). Neural network surrogate of QuaLiKiz using JET experimental data to populate training space. Physics of Plasmas, 28(3), 032305. https://doi.org/10.1063/5.0038290
Marin, M. ., Citrin, J. ., Garzotti, L. ., Valovic, M. ., Bourdelle, C. ., Camenen, Y. ., … Contributors, J. . (2021). Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak. Nuclear Fusion, 61(3), 036042. https://doi.org/10.1088/1741-4326/abda00
Ho, A. . (2021). Development of neural networks towards predict-first plasma modelling (Eindhoven University of Technology). Eindhoven University of Technology, Eindhoven, Netherlands. Retrieved from https://research.tue.nl/en/publications/development-of-neural-networks-towards-predict-first-plasma-model (Original work published)
Van Mulders, S. ., Felici, F. ., Sauter, O. ., Citrin, J. ., Ho, A. ., Marin, M. ., & van de Plassche, K. . (2021). Rapid optimization of stationary tokamak plasmas in RAPTOR: demonstration for the ITER hybrid scenario with neural network surrogate transport model QLKNN. Nuclear Fusion, 61(8), 086019. https://doi.org/10.1088/1741-4326/ac0d12
Marin, M. ., Citrin, J. ., Bourdelle, C. ., Camenen, Y. ., Casson, F. J., Ho, A. ., … Contributors, J. . (2020). First-principles-based multiple-isotope particle transport modelling at JET. Nuclear Fusion, 60(4), 046007. https://doi.org/10.1088/1741-4326/ab60d1
van de Plassche, K. L., Citrin, J. ., Bourdelle, C. ., Camenen, Y. ., Casson, F. J., Dagnelie, V. I., … Van Mulders, S. . (2020). Fast modelling of turbulent transport in fusion plasmas using neural networks. Physics of Plasmas, 27(2), 022310. https://doi.org/10.1063/1.5134126