DIFFER
DIFFER Publication

A rotational Raman study under non-thermal conditions in a pulsed CO2 glow discharge

Author
Abstract

The implementation of 'in situ' rotational Raman spectroscopy is realized for a pulsed glow discharge in CO2 in the mbar range and is used to study the rotational temperature and molecular number densities of CO2, CO, and O2. The polarizability anisotropy of these molecules is required for extracting number densities from the recorded spectra and is determined for incident photons of 532 nm. The spatiotemporally-resolved measurements are performed in the same reactor and at equal discharge conditions (5-10 ms on-off cycle, 50 mA plasma current, 6.7 mbar pressure) as in recently published work employing 'in situ' Fourier transform infrared (FTIR) spectroscopy. The rotational temperature ranges from 394 K to 809 K from start to end of the discharge pulse and is constant over the length of the reactor. The discharge is demonstrated to be spatially uniform in gas composition, with a CO2 conversion factor of 0.15 ± 0.02. Rotational temperatures and molecular composition agree well with the FTIR results, while the spatial uniformity confirms the assumption made for the FTIR analysis of a homogeneous medium over the line-of-sight of absorption. Furthermore, the rotational Raman spectra of CO2 are related to vibrational temperatures through the vibrationally averaged nuclear spin degeneracy, which is expressed in the intensity ratio between even and odd numbered Raman peaks. The elevation of the odd averaged degeneracy above thermal conditions agrees well with the elevation of vibrational temperatures of CO2, acquired in the FTIR study.

Year of Publication
2018
Journal
Plasma Sources Science and Technology
Volume
27
Issue
4
Number of Pages
045009
DOI
10.1088/1361-6595/aabab6
PId
69273e46208a612fa012ac105c8c2292
Alternate Journal
Plasma Sources Sci. Technol.
Label
OA
Attachment
Journal Article
Download citation