DIFFER
DIFFER Publication

Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles

Author
Abstract

The carbon dioxide and steam co-electrolysis in solid oxide cells offers an efficient way to store the intermittent renewable electricity in the form of syngas (CO + H2), which constitutes a key intermediate for the chemical industry. The co-electrolysis process, however, is challenging in terms of materials selection. The cell composites, and particularly the fuel electrode, are required to exhibit adequate stability in redox environments and coking that rules out the conventional Ni cermets. La0.75Sr0.25Cr0.5Mn0.5O3 (LSCrM) perovskite oxides represent a promising alternative solution, but with electrocatalytic activity inferior to the conventional Ni-based cermets. Here, we report on how the electrochemical properties of a state-of-the-art LSCrM electrode can be significantly enhanced by introducing uniformly distributed Pt nanoparticles (18 nm) on its surface via the atomic layer deposition (ALD). At 850 °C, Pt nanoparticle deposition resulted in a ∼62% increase of the syngas production rate during electrolysis mode (at 1.5 V), whereas the power output was improved by ∼84% at fuel cell mode. Our results exemplify how the powerful ALD approach can be employed to uniformly disperse small amounts (∼50 μg·cm–2) of highly active metals to boost the limited electrocatalytic properties of redox stable perovskite fuel electrodes with efficient material utilization.

Year of Publication
2020
Journal
ACS Sustainable Chemistry & Engineering
Volume
8
Issue
33
Number of Pages
12646–12654
Date Published
08/2020
DOI
10.1021/acssuschemeng.0c04274
PId
61a7a1d99361a3b3f35dd678175e0da4
Alternate Journal
ACS Sustainable Chem. Eng.
Label
OA
Attachment
Journal Article
Download citation