DIFFER
DIFFER Publication

Extended Full-MHD Simulation of Non-linear Instabilities in Tokamak Plasmas

Author
Abstract

Non-linear MHD simulations play an essential role in active research and understanding of tokamak plasmas for the realisation of a fusion power plant. The development of MHD codes like JOREK is a key aspect of this research effort. In this paper, we present an operational version of the full-MHD model implemented in JOREK, a significant advancement from the reduced-MHD model used for previous studies, where assumptions were made on the perpendicular dynamics and the toroidal magnetic field. The final model is presented in detail, and benchmarks are performed using both linear and non-linear simulations, including comparisons between the new full-MHD model of JOREK and the previously extensively studied reduced-MHD model, as well as results from the linear full-MHD code CASTOR3D. For the cases presented, this new JOREK full-MHD model is numerically and physically reliable, even without the use of numerical stabilisation methods. Non-linear modelling results of typical tokamak instabilities are presented, including disruption and ELM physics, most relevant to current open issues concerning future tokamaks like ITER and DEMO.

Year of Publication
2020
Journal
Physics of Plasmas
Volume
27
Issue
10
Number of Pages
102510
DOI
10.1063/5.0018208
PId
b33e61ecffc8c6434787f336cc636f24
Alternate Journal
Phys. Plasmas
Label
OA
Journal Article
Download citation