DIFFER
DIFFER Publication

Model-based impurity emission front control using deuterium fueling and nitrogen seeding in TCV

Author
Abstract

This paper presents the first result using nitrogen-seeded exhaust feedback control of the NII impurity emission front in TCV. The NII emission front position is consistently located below its commonly used CIII counterpart, indicating the NII emission front is representative of a colder plasma region. We demonstrate control of the NII impurity emission front position for two cases: 1) using nitrogen seeding as the sole actuator, and 2) using deuterium fueling as an actuator while injecting a small amount of nitrogen that remains a trace impurity. For sole nitrogen actuation, peak target current density is significantly reduced when the NII emission front approaches the x-point (~ 50% for the NII front at the halfway point). When actuating with deuterium, peak target current density is less affected, which is explained by changes in fueling engendering a different scrape-off-layer plasma density. Perturbative (system identification) experiments show that nitrogen actuation induces a stronger, but slower, response of the NII emission front than deuterium actuation. Moving the NII emission front back to the target after pushing it towards the x-point is proven difficult, where both the NII front position and total radiated power do not reach pre-seeding conditions within the discharge time following termination of nitrogen injection. This result highlights the need to account for impurity retention for such seeded discharges in exhaust control strategies.

Year of Publication
2023
Journal
Nuclear Fusion
Volume
63
Issue
2
Number of Pages
026006
Publisher
IOP Publishing
DOI
10.1088/1741-4326/aca620
PId
44b1f95232f280660b84b99bbc67e6d1
Alternate Journal
Nucl. Fusion
Label
OA
Journal Article
Download citation