TY - JOUR
T1 - Experimental and theoretical determination of the efficiency of a sub-atmospheric flowing high power cascaded arc hydrogen plasma source
JF - Plasma Sources Science & Technology
Y1 - 2010
A1 - Vijvers, W. A. J.
A1 - D.C. Schram
A1 - Shumack, A. E.
A1 - Cardozo, N. J. L.
A1 - Rapp, J.
A1 - G. J. van Rooij
KW - ARGON
KW - RECOMBINATION
KW - THERMAL PLASMAS
KW - TRANSPORT
AB - Cascaded arc plasma sources with channel diameters between 4 and 8mm were experimentally investigated at discharge currents up to 900A and hydrogen (H-2) flow rates up to 10 slm. Pressure measurements at the arc exit showed that the heavy particle temperature in the discharge channel was about 0.8 eV. The electron temperature was calculated from the electron mass balance, taking into account electron losses due to ambipolar diffusion and convection out of the source channel. This calculation showed that the electron temperature was 1.5-4 eV, increasing with decreasing density in the channel (i.e. with decreasing H2 flow rate and increasing diameter). The results of Thomson scattering measurements at 1 and 5 cm distance from the source exit showed the same trends. Using measurements of the average axial electric field, the effective size of the current-carrying 'active' plasma was calculated, expressed in terms of the filling fraction rho(2) = (reff/R)(2). The data showed that the filling fraction increased linearly with the input power and was independent of the diameter and flow rate. The ionization degree in the active center was estimated to be 20-30% from an evaluation of the electron energy balance, Thomson scattering measurements and H-beta emission measurements. The highest gas efficiency was obtained when the channel was completely filled at a maximum current of 900A (65 kW input power, 8mm channel, 4 slm flow rate) and was 19%. The highest energy efficiency was 7%.
VL - 19
SN - 0963-0252
UR - ://000284689600016
N1 - ISI Document Delivery No.: 686IITimes Cited: 0Cited Reference Count: 33
U1 - PSI
U5 - 7d8e1a149217e5d7a88564b425afba5e
ER -