DIFFER
DIFFER Publication

Divertor shaping with neutral baffling as a solution to the tokamak power exhaust challenge

Label Value
Author
Abstract
Exhausting power from the hot fusion core to the plasma-facing components is one fusion energy’s biggest challenges. The MAST Upgrade tokamak uniquely integrates strong containment of neutrals within the exhaust area (divertor) with extreme divertor shaping capability. By systematically altering the divertor shape, this study shows the strongest evidence to date to our knowledge that long-legged divertors with a high magnetic field gradient (total flux expansion) deliver key power exhaust benefits without adversely impacting the hot fusion core. These benefits are already achieved with relatively modest geometry adjustments that are more feasible to integrate in reactor designs. Benefits include reduced target heat loads and improved access to, and stability of, a neutral gas buffer that ‘shields’ the target and enhances power exhaust (detachment). Analysis and model comparisons shows these benefits are obtained by combining multiple shaping aspects: long-legged divertors have expanded plasma-neutral interaction volume that drive reductions in particle and power loads, while total flux expansion enhances detachment access and stability. Containing the neutrals in the exhaust area with physical structures further augments these shaping benefits. These results demonstrate strategic variation in the divertor geometry and magnetic topology is a potential solution to one of fusion’s power exhaust challenge.
Year of Publication
2025
Journal
Nature Communications Physics
Volume
8
Number of Pages
215
Date Published
05/2025
DOI
PId
82e897107b0228e325970e322e260ffb
Alternate Journal
Nat. Commun. Phys.
Label
OA
Journal Article
Download citation