TY - JOUR
T1 - Model-based real-time plasma electron density profile estimation and control on ASDEX Upgrade and TCV
JF - Fusion Engineering and Design
Y1 - 2019
A1 - Blanken, T. C.
A1 - Felici, F.
A1 - Galperti, C.
A1 - Kudlacek, O.
A1 - Janky, F.
A1 - Mlynek, A.
A1 - Giannone, L.
A1 - Lang, P. T.
A1 - Treutterer, W.
A1 - M. R. de Baar
A1 - Heemels, W. P. M. H.
AB - Real-time plasma electron density profile estimation and control are essential in the operation of future tokamaks. In particular, the robustness against diagnostics failure and disturbances is important for long pulse operation. A model-based approach to profile estimation is implemented on the control systems of ASDEX Upgrade and TCV, which is able to merge information from various diagnostics for both core and edge density, as well as systematically handling diagnostic failure. The model used for profile estimation is employed to tune a feedback controller before an experiment, thereby reducing the experimental time required for tuning. Subsequently, this observer and controller have been employed in scientific experiments on ASDEX Upgrade and TCV. On ASDEX Upgrade, the density profile estimator was used in high-density pellet-fuelled discharges, providing a more reliable real-time estimate of the core density for feedback control than previously achieved. On TCV, in experiments on integrated pressure and safety factor profile control, the density profile estimator and feedback controller provide a constant density despite disturbances from time-varying ECCD power. Additionally, the real-time density profiles provide an essential input for other real-time plasma state estimation codes including Electron Cyclotron ray tracing codes, contributing to a complete real-time estimation of the entire plasma state.
VL - 142
U1 - FP
U2 - TP
U5 - ba04f3c64979227f0173cffd3afac99f
ER -
TY - JOUR
T1 - ELM control at the L -> H transition by means of pellet pacing in the ASDEX Upgrade and JET all-metal-wall tokamaks
JF - Plasma Physics and Controlled Fusion
Y1 - 2015
A1 - Lang, P. T.
A1 - Meyer, H.
A1 - Birkenmeier, G.
A1 - Burckhart, A.
A1 - Carvalho, I. S.
A1 - Delabie, E.
A1 - Frassinetti, L.
A1 - Huijsmans, G.
A1 - Kocsis, G.
A1 - Loarte, A.
A1 - Maggi, C. F.
A1 - Maraschek, M.
A1 - B. Plöckl
A1 - Rimini, F.
A1 - Ryter, F.
A1 - Saarelma, S.
A1 - Szepesi, T.
A1 - Wolfrum, E.
A1 - ASDEX Upgrade Team
A1 - JET Contributors
AB - In ITER, pellets are used for ELM pacing and fueling. More importantly, ELM control and in particular control of the first ELM needs to be demonstrated in the non-nuclear phase of ITER during operation in H or He. Whilst D pellets have been established as an ELM control technique in the stationary phase with D target plasmas in devices with C as plasma-facing component, the behavior of other isotopes in non-stationary phases are not so well known. Here, we report on new pellet triggering experiments in ASDEX Upgrade and JET that mimic specific ITER operating scenarios. Both machines are equipped with an all-metal wall; recent investigations have shown that pellet triggering and pacing become more intricate when an all-metal wall surface is employed. In both machines, ELM triggering has been shown to occur after injection of D pellets into D plasmas during extended ELM-free phases, often following the L → H transition. In both devices the pellets are found to induce ELMs under conditions far from the stability boundary for type-I ELMs. Near the L → H transition, induced ELMs in some cases are more likely to have type-III rather than type-I characteristics. Furthermore, in ASDEX Upgrade this study was conducted during L → H transitions in the current ramp-up phase as envisaged for ITER. In addition, the pellet’s ELM trigger potential has been proven in ASDEX Upgrade with a correct isotopic compilation for the non-nuclear phase in ITER, viz. H pellets into either He or H plasmas. Results from this study are encouraging since they have demonstrated the pellets’ potential to provoke ELMs even under conditions that are quite far from the stability boundaries attributed to the occurrence of spontaneous ELMs. However, with the recent change from carbon to an all-metal plasma-facing component, examples have been found in both machines where pellets failed to establish ELM control under conditions where this would be expected and needed. Consequently, a major task of future investigations in this field will be to shed more light on the underlying physics of the pellet ELM triggering process to allow sound predictions for ITER.
VL - 57
IS - 4
U1 - FP
U2 - PDG
U5 - 02b32991b7ebde60647194fcf5e85e61
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2013
A1 - Stroth, U.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Amdor, C.
A1 - Angioni, C.
A1 - Balden, M.
A1 - Bardin, S.
A1 - L. Barrera Orte
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brezinsek, S.
A1 - Brochard, T.
A1 - M. Brüdgam
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Casson, F. J.
A1 - Chankin, A.
A1 - Chapman, I.
A1 - Clairet, F.
A1 - Classen, I.G.J.
A1 - Coenen, J. W.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Curran, D.
A1 - da Silva, F.
A1 - P. de Marné
A1 - D'Inca, R.
A1 - Douai, D.
A1 - Drube, R.
A1 - Dunne, M.
A1 - Dux, R.
A1 - Eich, T.
A1 - Eixenberger, H.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fischer, R.
A1 - H. Fünfgelder
A1 - Fuchs, J. C.
A1 - K. Gál
A1 - M. García Muñoz
A1 - Geiger, B.
A1 - Giannone, L.
A1 - T. Görler
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Guimarais, L.
A1 - S. Günter
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - T. Härtl
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - H. Höhnle
A1 - M. Hölzl
A1 - Hopf, C.
A1 - Houben, A.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kantor, M.
A1 - C.-P. Käsemann
A1 - Kallenbach, A.
A1 - S. Kálvin
A1 - Kantor, M.
A1 - Kappatou, A.
A1 - Kardaun, O.
A1 - Kasparek, W.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - H.-J. Klingshirn
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kubic, M.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Lazaros, A.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lindig, S.
A1 - Lisgo, S.
A1 - Lohs, A.
A1 - Lunt, T.
A1 - Maier, H.
A1 - Makkonen, T.
A1 - Mank, K.
A1 - M.-E. Manso
A1 - Maraschek, M.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Mehlmann, F.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Müller, S.
A1 - H.W. Müller
A1 - M. Münich
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuwirth, D.
A1 - Nocente, M.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - B. Plöckl
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polozhiy, K.
A1 - Potzel, S.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reimold, F.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - G. J. van Rooij
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Salewski, M.
A1 - Santos, J.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schrittwieser, R.
A1 - Schubert, M.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sieglin, B.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sommer, F.
A1 - A. Stäbler
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Tala, T.
A1 - Tardini, G.
A1 - Teschke, M.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Tsalas, M.
A1 - VanZeeland, M. A.
A1 - Varela, P.
A1 - Veres, G.
A1 - Vicente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Viola, B.
A1 - Vorpahl, C.
A1 - Wachowski, M.
A1 - Wagner, D.
A1 - Wauters, T.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - E. Würsching
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
AB - The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m −2 . Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
VL - 53
UR - http://hdl.handle.net/11858/00-001M-0000-0026-E166-7
IS - 10
U1 - FP
U2 - PDG
U5 - 0b5b08fdc590c85cc01e6d1db1958848
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2011
A1 - Kallenbach, A.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Angioni, C.
A1 - Atanasiu, C. V.
A1 - Balden, M.
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brudgam, M.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Chankin, A.
A1 - Classen, I.G.J.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - de Marne, P.
A1 - D'Inca, R.
A1 - Drube, R.
A1 - Dux, R.
A1 - Eich, T.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fahrbach, H. U.
A1 - Fattorini, L.
A1 - Fischer, R.
A1 - Flaws, A.
A1 - Funfgelder, H.
A1 - Fuchs, J. C.
A1 - Gal, K.
A1 - Munoz, M. G.
A1 - Geiger, B.
A1 - Adamov, M. G.
A1 - Giannone, L.
A1 - Giroud, C.
A1 - Gorler, T.
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hicks, N.
A1 - Hobirk, J.
A1 - Hohnle, H.
A1 - Holzl, M.
A1 - Hopf, C.
A1 - Horton, L.
A1 - Huart, M.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kasemann, C. P.
A1 - Kalvin, S.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - Klingshirn, H. J.
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Kollotzek, H.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - N C Luhmann Jr.
A1 - Lunt, T.
A1 - Lyssoivan, A.
A1 - Maier, H.
A1 - Maggi, C.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Maraschek, M.
A1 - Martin, P.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Neu, G.
A1 - Neu, R.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Park, H. K.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polochiy, K.
A1 - Potzel, S.
A1 - Prechtl, M.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reiter, B.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Sandmann, W.
A1 - Santos, J.
A1 - Sassenberg, K.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schrittwieser, R.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Serra, F.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Sommer, F.
A1 - Stabler, A.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Szepesi, T.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Urso, L.
A1 - Varela, P.
A1 - Vincente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Vorpahl, C.
A1 - Wagner, D.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Wigger, C.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yadikin, D.
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
KW - PHYSICS
KW - REFLECTOMETRY
KW - TOKAMAK
AB - The ASDEX Upgrade programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. After the finalization of the tungsten coating of the plasma facing components, the re-availability of all flywheel-generators allowed high-power operation with up to 20 MW heating power at I(p) up to 1.2 MA. Implementation of alternative ECRH schemes (140 GHz O2- and X3-mode) facilitated central heating above n(e) = 1.2 x 10(20) m(-3) and low q(95) operation at B(t) = 1.8 T. Central O2-mode heating was successfully used in high P/R discharges with 20 MW total heating power and divertor load control with nitrogen seeding. Improved energy confinement is obtained with nitrogen seeding both for type-I and type-III ELMy conditions. The main contributor is increased plasma temperature, no significant changes in the density profile have been observed. This behaviour may be explained by higher pedestal temperatures caused by ion dilution in combination with a pressure limited pedestal and hollow nitrogen profiles. Core particle transport simulations with gyrokinetic calculations have been benchmarked by dedicated discharges using variations of the ECRH deposition location. The reaction of normalized electron density gradients to variations of temperature gradients and the T(e)/T(i) ratio could be well reproduced. Doppler reflectometry studies at the L-H transition allowed the disentanglement of the interplay between the oscillatory geodesic acoustic modes, turbulent fluctuations and the mean equilibrium E x B flow in the edge negative E(r) well region just inside the separatrix. Improved pedestal diagnostics revealed also a refined picture of the pedestal transport in the fully developed H-mode type-I ELM cycle. Impurity ion transport turned out to be neoclassical in between ELMs. Electron and energy transport remain anomalous, but exhibit different recovery time scales after an ELM. After recovery of the pre-ELM profiles, strong fluctuations develop in the gradients of n(e) and T(e). The occurrence of the next ELM cannot be explained by the local current diffusion time scale, since this turns out to be too short. Fast ion losses induced by shear Alfven eigenmodes have been investigated by time-resolved energy and pitch angle measurements. This allowed the separation of the convective and diffusive loss mechanisms.
VL - 51
SN - 0029-5515
IS - 9
N1 - ISI Document Delivery No.: 818DPTimes Cited: 1Cited Reference Count: 45SI
U1 - FP
U2 - PDG
U5 - a193177a90d5b600862ca1e40bcc67af
ER -
TY - JOUR
T1 - ELM pacing investigations at JET with the new pellet launcher
JF - Nuclear Fusion
Y1 - 2011
A1 - Lang, P. T.
A1 - Alonso, A.
A1 - Alper, B.
A1 - Belonohy, E.
A1 - Boboc, A.
A1 - Devaux, S.
A1 - Eich, T.
A1 - Frigione, D.
A1 - Gal, K.
A1 - Garzotti, L.
A1 - Geraud, A.
A1 - Kocsis, G.
A1 - Kochl, F.
A1 - Lackner, K.
A1 - Loarte, A.
A1 - Lomas, P. J.
A1 - Maraschek, M.
A1 - Muller, H. W.
A1 - Neu, R.
A1 - Neuhauser, J.
A1 - Petravich, G.
A1 - Saibene, G.
A1 - Schweinzer, J.
A1 - Thomsen, H.
A1 - Tsalas, M.
A1 - Wenninger, R.
A1 - Zohm, H.
KW - ASDEX UPGRADE
KW - ENERGY
KW - INJECTION
KW - ITER
KW - LOSSES
KW - MODE
AB - A new pellet injection system was installed at JET designed for both fuelling and ELM pacing. The purpose of the pacing section was to validate pellet ELM pacing as a suitable tool for ELM mitigation in ITER. Pellet pacing was confirmed at the large size scale of JET. The dynamics of triggered ELMs was investigated with respect to their spontaneous counterparts. Triggered ELMs show features also typical for spontaneous ELMs in several operational regimes. Since none of these regimes was unsettled by the pellets this is a strong hint for compatibility with other plasma control tools. Observations and modelling results indicate the ELM triggering occurs by the evolution of the pellet ablation plasmoid into the first ELM filament followed by a poloidal spread of the instability. An ELM obviously can be forced by a pellet due to the strong local perturbation imposed already under unusual onset conditions but then evolves like any ELM typical for the corresponding plasma regime. For tool optimization the pellet mass and hence the convective confinement losses imposed have to be minimized. In our experiments, a lower mass threshold was observed for the first time. It has been found that to reliably trigger an ELM the pellet needs to be sufficiently large (and fast) to penetrate close to the pedestal top. Recent investigations are clear steps forward to validate the pellet pacing approach for ITER.

VL - 51
SN - 0029-5515
IS - 3
N1 - ISI Document Delivery No.: 729AETimes Cited: 4Cited Reference Count: 38
U1 - FP

U2 - PDG

U5 - 506bca96c5637433dac75b877a0bcc14
ER -
TY - JOUR
T1 - Studies of the 'Quiescent H-mode' regime in ASDEX Upgrade and JET
JF - Nuclear Fusion
Y1 - 2005
A1 - Suttrop, W.
A1 - Hynonen, V.
A1 - Kurki-Suonio, T.
A1 - Lang, P. T.
A1 - Maraschek, M.
A1 - Neu, R.
A1 - Stabler, A.
A1 - Conway, G. D.
A1 - Hacquin, S.
A1 - Kempenaars, M.
A1 - Lomas, P. J.
A1 - M F F Nave
A1 - Pitts, R.A.
A1 - Zastrow, K. D.
VL - 45
SN - 0029-5515
UR - ://000231000300022
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 4eadecf814ace1534dbd46b6d198be88
ER -
TY - JOUR
T1 - Overview of ASDEX upgrade results
JF - Nuclear Fusion
Y1 - 2003
A1 - Zohm, H.
A1 - Angioni, C.
A1 - Arslanbekov, R.
A1 - Atanasiu, C.
A1 - Becker, G.
A1 - Becker, W.
A1 - Behler, K.
A1 - Behringer, K.
A1 - Bergmann, A.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Bolshukhin, D.
A1 - Bolzonella, T.
A1 - Borrass, K.
A1 - Brambilla, M.
A1 - Braun, F.
A1 - Buhler, A.
A1 - Carlson, A.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Drube, R.
A1 - Dux, R.
A1 - Egorov, S.
A1 - Eich, T.
A1 - Engelhardt, K.
A1 - Fahrbach, H. U.
A1 - Fantz, U.
A1 - Faugel, H.
A1 - Finken, K.H.
A1 - Foley, M.
A1 - Franzen, P.
A1 - Fuchs, J. C.
A1 - Gafert, J.
A1 - Fournier, K. B.
A1 - Gantenbein, G.
A1 - Gehre, O.
A1 - Geier, A.
A1 - Gernhardt, J.
A1 - Goodman, T.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hartmann, D.
A1 - Heger, B.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - Hofmeister, F.
A1 - Hohenocker, H.
A1 - Horton, L. D.
A1 - Igochine, V.
A1 - Jacchia, A.
A1 - Jakobi, M.
A1 - Jenko, F.
A1 - Kallenbach, A.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Keller, A.
A1 - Kendl, A.
A1 - Kim, J. W.
A1 - Kirov, K.
A1 - Kochergov, R.
A1 - Kollotzek, H.
A1 - Kraus, W.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lang, P. T.
A1 - Lasnier, C.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leonard, A. W.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - Lorenz, A.
A1 - Lorenzini, R.
A1 - Maggi, C.
A1 - Maier, H.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Mantica, P.
A1 - Maraschek, M.
A1 - Martines, E.
A1 - Mast, K. F.
A1 - McCarthy, P.
A1 - Meisel, D.
A1 - Meister, H.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Merkl, D.
A1 - Mertens, V.
A1 - Monaco, F.
A1 - Muck, A.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Na, Y. S.
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuhauser, J.
A1 - Nguyen, F.
A1 - Nishijima, D.
A1 - Nishimura, Y.
A1 - Noterdaeme, J. M.
A1 - Nunes, I.
A1 - Pautasso, G.
A1 - Peeters, A.G.
A1 - Pereverzev, G.
A1 - Pinches, S. D.
A1 - Poli, E.
A1 - Proschek, M.
A1 - Pugno, R.
A1 - Quigley, E.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Ryter, F.
A1 - Saarelma, S.
A1 - Sandmann, W.
A1 - Savtchkov, A.
A1 - Sauter, O.
A1 - Schade, S.
A1 - Schilling, H. B.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schwarz, E.
A1 - Schweinzer, J.
A1 - Schweizer, S.
A1 - Scott, B. D.
A1 - Seidel, U.
A1 - Serra, F.
A1 - Sesnic, S.
A1 - Sihler, C.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Speth, E.
A1 - Stabler, A.
A1 - Steuer, K. H.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Suttrop, W.
A1 - Tabasso, A.
A1 - Tanga, A.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Treutterer, W.
A1 - Troppmann, M.
A1 - Urano, H.
A1 - Varela, P.
A1 - Vollmer, O.
A1 - Wagner, D.
A1 - Wenzel, U.
A1 - Wesner, F.
A1 - Westerhof, E.
A1 - Wolf, R.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yoon, S. W.
A1 - Yu, Q.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zehrfeld, H. P.
VL - 43
SN - 0029-5515
UR - ://000187838300005
U1 - Fusion Physics
U2 - Tokamak physics
U5 - 988d14e5a44c19882b112fcb8692c1fb
ER -
TY - JOUR
T1 - High density operation at JET by pellet refuelling
JF - Plasma Physics and Controlled Fusion
Y1 - 2002
A1 - Lang, P. T.
A1 - Alper, B.
A1 - Baylor, L. R.
A1 - Beurskens, M.
A1 - Cordey, J. G.
A1 - Dux, R.
A1 - Felton, R.
A1 - Garzotti, L.
A1 - Haas, G.
A1 - Horton, L. D.
A1 - Jachmich, S.
A1 - Jones, T. T. C.
A1 - Lorenz, A.
A1 - Lomas, P. J.
A1 - Maraschek, M.
A1 - Muller, H. W.
A1 - Ongena, J.
A1 - Rapp, J.
A1 - Renk, K. F.
A1 - Reich, M.
A1 - Sartori, R.
A1 - Schmidt, G.
A1 - Stamp, M.
A1 - Suttrop, W.
A1 - Villedieu, E.
A1 - Wilson, D.
VL - 44
SN - 0741-3335
UR - ://000178415900011
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 249bb89946c62ca7e32e1d5e9c23726e
ER -
TY - JOUR
T1 - High density, high performance high-confinement-mode plasmas in the Joint European Torus (JET)
JF - Physics of Plasmas
Y1 - 2002
A1 - Suttrop, W.
A1 - Ongena, J.
A1 - Becoulet, M.
A1 - Cordey, J. G.
A1 - Dumortier, P.
A1 - Huysmans, G. T. A.
A1 - Lang, P. T.
A1 - Loarte, A.
A1 - Lomas, P. J.
A1 - Saibene, G.
A1 - Sartori, R.
A1 - Parail, V.V.
A1 - Valovic, M.
A1 - Andrew, P.
A1 - Andrew, Y.
A1 - Beurskens, M. N. A.
A1 - Budny, R.
A1 - Charlet, M.
A1 - Coffey, I.
A1 - Eich, T.
A1 - Gowers, C.
A1 - Hillis, D. L.
A1 - Hogan, J.
A1 - Ingesson, L. C.
A1 - Jachmich, S.
A1 - Kallenbach, A.
A1 - Koslowski, H. R.
A1 - Lawson, K. D.
A1 - G. P. Maddison
A1 - Maraschek, M. E.
A1 - McDonald, D. C.
A1 - Messiaen, A.
A1 - Milani, F.
A1 - Monier-Garbet, P.
A1 - M F F Nave
A1 - M. E. Puiatti
A1 - Rapp, J.
A1 - Righi, E.
A1 - Sauter, O.
A1 - Sartori, F.
A1 - Schweinzer, J.
A1 - Stamp, M.
A1 - Strachan, J. D.
A1 - Stober, J.
A1 - Telesca, G.
A1 - Unterberg, B.
A1 - Valisa, M.
A1 - P. de Vries
A1 - Weyssow, B.
A1 - Zastrow, K. D.
VL - 9
SN - 1070-664X
UR - ://000175198200032
N1 - Part 2
U1 - Fusion Physics
U2 - Instrumentation development
U5 - bc2939fd18a20d4b44e0acca7745c0a5
ER -
TY - JOUR
T1 - Optimization of pellet scenarios for long pulse fuelling to high densities at JET
JF - Nuclear Fusion
Y1 - 2002
A1 - Lang, P. T.
A1 - Alper, B.
A1 - Baylor, L. R.
A1 - Beurskens, M.
A1 - Cordey, J. G.
A1 - Dux, R.
A1 - Felton, R.
A1 - Garzotti, L.
A1 - Haas, G.
A1 - Horton, L. D.
A1 - Jachmich, S.
A1 - Jones, T. T. C.
A1 - Lomas, P. J.
A1 - Lorenz, A.
A1 - Maraschek, M.
A1 - Miller, H. W.
A1 - Ongena, J.
A1 - Rapp, J.
A1 - Reich, M.
A1 - Renk, K. F.
A1 - Sartori, R.
A1 - Schmidt, G.
A1 - Stamp, M.
A1 - Suttrop, W.
A1 - Villedieu, E.
KW - ASDEX UPGRADE
KW - DISCHARGES
KW - DRIFT
KW - INJECTION
KW - LAUNCH
KW - NEOCLASSICAL TEARING MODES
KW - OPERATION
KW - PERFORMANCE
KW - TOKAMAK PLASMAS
AB - Pellet injection was investigated for its fuelling capability to high densities in ELMy H mode discharges at JET. Applying the high field side launch system, optimized refuelling scenarios were developed on the basis of conventional discharge configurations with I-p = 2.5 MA, B-t = 2.4 T, averaged triangularity (delta) approximate to 0.34 and mainly neutral beam heating at a level of approximately 17 MW. The accessible operational range was extended with respect to gas puff refuelling by the use of pellet injection. For example, H mode conditions could be maintained at densities beyond the Greenwald level. Plasma energy confinement was observed to become density independent at high densities. Deep pellet particle deposition made possible the uncoupling of edge and core density, allowing more peaked density profiles. When confinement deterioration due to pellet triggered MHD activity or parasitic pellet borne gas was avoided in appropriate pulse schedules, an enhanced particle inventory was achieved while maintaining the plasma pressure profile. In a technical assessment it was found that there is still room for further enhancement of the injection scenario by improved adaptation to high density plasma operation.
VL - 42
SN - 0029-5515
UR - ://000175742700005
N1 - ISI Document Delivery No.: 554NT
U1 - Fusion Physics
U2 - Tokamak physics
U5 - 1421a6c4436c95928b481d5e864c5873
ER -