TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2013
A1 - Stroth, U.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Amdor, C.
A1 - Angioni, C.
A1 - Balden, M.
A1 - Bardin, S.
A1 - L. Barrera Orte
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Birkenmeier, G.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottereau, C.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brezinsek, S.
A1 - Brochard, T.
A1 - M. Brüdgam
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Casson, F. J.
A1 - Chankin, A.
A1 - Chapman, I.
A1 - Clairet, F.
A1 - Classen, I.G.J.
A1 - Coenen, J. W.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Curran, D.
A1 - da Silva, F.
A1 - P. de Marné
A1 - D'Inca, R.
A1 - Douai, D.
A1 - Drube, R.
A1 - Dunne, M.
A1 - Dux, R.
A1 - Eich, T.
A1 - Eixenberger, H.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fischer, R.
A1 - H. Fünfgelder
A1 - Fuchs, J. C.
A1 - K. Gál
A1 - M. García Muñoz
A1 - Geiger, B.
A1 - Giannone, L.
A1 - T. Görler
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Guimarais, L.
A1 - S. Günter
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - T. Härtl
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - H. Höhnle
A1 - M. Hölzl
A1 - Hopf, C.
A1 - Houben, A.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kantor, M.
A1 - C.-P. Käsemann
A1 - Kallenbach, A.
A1 - S. Kálvin
A1 - Kantor, M.
A1 - Kappatou, A.
A1 - Kardaun, O.
A1 - Kasparek, W.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - H.-J. Klingshirn
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kubic, M.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Lazaros, A.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lindig, S.
A1 - Lisgo, S.
A1 - Lohs, A.
A1 - Lunt, T.
A1 - Maier, H.
A1 - Makkonen, T.
A1 - Mank, K.
A1 - M.-E. Manso
A1 - Maraschek, M.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Mehlmann, F.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Müller, S.
A1 - H.W. Müller
A1 - M. Münich
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuwirth, D.
A1 - Nocente, M.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - B. Plöckl
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polozhiy, K.
A1 - Potzel, S.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reimold, F.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - G. J. van Rooij
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Salewski, M.
A1 - Santos, J.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schrittwieser, R.
A1 - Schubert, M.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sieglin, B.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sommer, F.
A1 - A. Stäbler
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Tala, T.
A1 - Tardini, G.
A1 - Teschke, M.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Tsalas, M.
A1 - VanZeeland, M. A.
A1 - Varela, P.
A1 - Veres, G.
A1 - Vicente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Viola, B.
A1 - Vorpahl, C.
A1 - Wachowski, M.
A1 - Wagner, D.
A1 - Wauters, T.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - E. Würsching
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
AB - The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m −2 . Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
VL - 53
UR - http://hdl.handle.net/11858/00-001M-0000-0026-E166-7
IS - 10
U1 - FP
U2 - PDG
U5 - 0b5b08fdc590c85cc01e6d1db1958848
ER -
TY - JOUR
T1 - Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks
JF - Nuclear Fusion
Y1 - 2013
A1 - M. García-Muñoz
A1 - Akaslompolo, S.
A1 - Asunta, O.
A1 - Boom, J.
A1 - Chen, X.
A1 - Classen, I.G.J.
A1 - Dux, R.
A1 - Evans, T. E.
A1 - Fietz, S.
A1 - Fisher, R. K.
A1 - Fuchs, C.
A1 - Geiger, B.
A1 - Hoelzl, M.
A1 - Igochine, V.
A1 - Jeon, Y. M.
A1 - Kim, J.
A1 - Kim, J. Y.
A1 - Kurzan, B.
A1 - Lazanyi, N.
A1 - Lunt, T.
A1 - McDermott, R. M.
A1 - Nocente, M.
A1 - Pace, D. C.
A1 - Rhodes, T. L.
A1 - Rodriguez-Ramos, M.
A1 - Shinohara, K.
A1 - Suttrop, W.
A1 - VanZeeland, M. A.
A1 - Viezzer, E.
A1 - Willensdorfer, M.
A1 - Wolfrum, E.
A1 - the ASDEX Upgrade
A1 - DIII-D Team
A1 - KSTAR Teams
AB - The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q 95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.
VL - 53
UR - http://stacks.iop.org/0029-5515/53/i=12/a=123008
U1 - FP
U2 - PDG
U5 - 297ecfd209412ec1f2b5deab45ac5511
ER -
TY - JOUR
T1 - Overview of ASDEX Upgrade results
JF - Nuclear Fusion
Y1 - 2011
A1 - Kallenbach, A.
A1 - Adamek, J.
A1 - Aho-Mantila, L.
A1 - Akaslompolo, S.
A1 - Angioni, C.
A1 - Atanasiu, C. V.
A1 - Balden, M.
A1 - Behler, K.
A1 - Belonohy, E.
A1 - Bergmann, A.
A1 - Bernert, M.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Boom, J.
A1 - Bottino, A.
A1 - Braun, F.
A1 - Brudgam, M.
A1 - Buhler, A.
A1 - Burckhart, A.
A1 - Chankin, A.
A1 - Classen, I.G.J.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - de Marne, P.
A1 - D'Inca, R.
A1 - Drube, R.
A1 - Dux, R.
A1 - Eich, T.
A1 - Endstrasser, N.
A1 - Engelhardt, K.
A1 - Esposito, B.
A1 - Fable, E.
A1 - Fahrbach, H. U.
A1 - Fattorini, L.
A1 - Fischer, R.
A1 - Flaws, A.
A1 - Funfgelder, H.
A1 - Fuchs, J. C.
A1 - Gal, K.
A1 - Munoz, M. G.
A1 - Geiger, B.
A1 - Adamov, M. G.
A1 - Giannone, L.
A1 - Giroud, C.
A1 - Gorler, T.
A1 - da Graca, S.
A1 - Greuner, H.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hakola, A. H.
A1 - Hangan, D.
A1 - Happel, T.
A1 - Hauff, T.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hicks, N.
A1 - Hobirk, J.
A1 - Hohnle, H.
A1 - Holzl, M.
A1 - Hopf, C.
A1 - Horton, L.
A1 - Huart, M.
A1 - Igochine, V.
A1 - Ionita, C.
A1 - Janzer, A.
A1 - Jenko, F.
A1 - Kasemann, C. P.
A1 - Kalvin, S.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Kirk, A.
A1 - Klingshirn, H. J.
A1 - Kocan, M.
A1 - Kocsis, G.
A1 - Kollotzek, H.
A1 - Konz, C.
A1 - Koslowski, R.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lackner, K.
A1 - Lang, P. T.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leipold, F.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - N C Luhmann Jr.
A1 - Lunt, T.
A1 - Lyssoivan, A.
A1 - Maier, H.
A1 - Maggi, C.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Maraschek, M.
A1 - Martin, P.
A1 - Mayer, M.
A1 - McCarthy, P. J.
A1 - McDermott, R.
A1 - Meister, H.
A1 - Menchero, L.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Mertens, V.
A1 - Merz, F.
A1 - Mlynek, A.
A1 - Monaco, F.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Neu, G.
A1 - Neu, R.
A1 - Nold, B.
A1 - Noterdaeme, J. M.
A1 - Park, H. K.
A1 - Pautasso, G.
A1 - Pereverzev, G.
A1 - Podoba, Y.
A1 - Pompon, F.
A1 - Poli, E.
A1 - Polochiy, K.
A1 - Potzel, S.
A1 - Prechtl, M.
A1 - M. J. Pueschel
A1 - Putterich, T.
A1 - Rathgeber, S. K.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Reiter, B.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Rott, M.
A1 - Ryter, F.
A1 - Sandmann, W.
A1 - Santos, J.
A1 - Sassenberg, K.
A1 - Sauter, P.
A1 - Scarabosio, A.
A1 - Schall, G.
A1 - Schmid, K.
A1 - Schneider, P. A.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schrittwieser, R.
A1 - Schweinzer, J.
A1 - Scott, B.
A1 - Sempf, M.
A1 - Serra, F.
A1 - Sertoli, M.
A1 - Siccinio, M.
A1 - Sigalov, A.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Sommer, F.
A1 - Stabler, A.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Sugiyama, K.
A1 - Suttrop, W.
A1 - Szepesi, T.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Told, D.
A1 - Treutterer, W.
A1 - Urso, L.
A1 - Varela, P.
A1 - Vincente, J.
A1 - Vianello, N.
A1 - Vierle, T.
A1 - Viezzer, E.
A1 - Vorpahl, C.
A1 - Wagner, D.
A1 - Weller, A.
A1 - Wenninger, R.
A1 - Wieland, B.
A1 - Wigger, C.
A1 - Willensdorfer, M.
A1 - Wischmeier, M.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yadikin, D.
A1 - Yu, Q.
A1 - Zammuto, I.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zhang, Y.
A1 - Zilker, M.
A1 - Zohm, H.
KW - PHYSICS
KW - REFLECTOMETRY
KW - TOKAMAK
AB - The ASDEX Upgrade programme is directed towards physics input to critical elements of the ITER design and the preparation of ITER operation, as well as addressing physics issues for a future DEMO design. After the finalization of the tungsten coating of the plasma facing components, the re-availability of all flywheel-generators allowed high-power operation with up to 20 MW heating power at I(p) up to 1.2 MA. Implementation of alternative ECRH schemes (140 GHz O2- and X3-mode) facilitated central heating above n(e) = 1.2 x 10(20) m(-3) and low q(95) operation at B(t) = 1.8 T. Central O2-mode heating was successfully used in high P/R discharges with 20 MW total heating power and divertor load control with nitrogen seeding. Improved energy confinement is obtained with nitrogen seeding both for type-I and type-III ELMy conditions. The main contributor is increased plasma temperature, no significant changes in the density profile have been observed. This behaviour may be explained by higher pedestal temperatures caused by ion dilution in combination with a pressure limited pedestal and hollow nitrogen profiles. Core particle transport simulations with gyrokinetic calculations have been benchmarked by dedicated discharges using variations of the ECRH deposition location. The reaction of normalized electron density gradients to variations of temperature gradients and the T(e)/T(i) ratio could be well reproduced. Doppler reflectometry studies at the L-H transition allowed the disentanglement of the interplay between the oscillatory geodesic acoustic modes, turbulent fluctuations and the mean equilibrium E x B flow in the edge negative E(r) well region just inside the separatrix. Improved pedestal diagnostics revealed also a refined picture of the pedestal transport in the fully developed H-mode type-I ELM cycle. Impurity ion transport turned out to be neoclassical in between ELMs. Electron and energy transport remain anomalous, but exhibit different recovery time scales after an ELM. After recovery of the pre-ELM profiles, strong fluctuations develop in the gradients of n(e) and T(e). The occurrence of the next ELM cannot be explained by the local current diffusion time scale, since this turns out to be too short. Fast ion losses induced by shear Alfven eigenmodes have been investigated by time-resolved energy and pitch angle measurements. This allowed the separation of the convective and diffusive loss mechanisms.
VL - 51
SN - 0029-5515
IS - 9
N1 - ISI Document Delivery No.: 818DPTimes Cited: 1Cited Reference Count: 45SI
U1 - FP
U2 - PDG
U5 - a193177a90d5b600862ca1e40bcc67af
ER -
TY - JOUR
T1 - Fast-ion transport induced by Alfven eigenmodes in the ASDEX Upgrade tokamak
JF - Nuclear Fusion
Y1 - 2011
A1 - M. García-Muñoz
A1 - Classen, I.G.J.
A1 - Geiger, B.
A1 - Heidbrink, W. W.
A1 - VanZeeland, M. A.
A1 - Akaslompolo, S.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Brambilla, M.
A1 - Conway, G. D.
A1 - da Graca, S.
A1 - Igochine, V.
A1 - Lauber, P.
A1 - Luhmann, N.
A1 - Maraschek, M.
A1 - Meo, F.
A1 - Park, H.
A1 - Schneller, M.
A1 - Tardini, G.
KW - BEAM
KW - DIII-D
KW - FUSION PRODUCTS
KW - INSTABILITIES
KW - JET
KW - PHYSICS
KW - PLASMAS
KW - SCINTILLATOR PROBE
KW - STELLARATOR
KW - TFTR
AB - A comprehensive suite of diagnostics has allowed detailed measurements of the Alfven eigenmode (AE) spatial structure and subsequent fast-ion transport in the ASDEX Upgrade (AUG) tokamak [ 1]. Reversed shear Alfven eigenmodes (RSAEs) and toroidal induced Alfven eigenmodes (TAEs) have been driven unstable by fast ions from ICRH as well as NBI origin. In ICRF heated plasmas, diffusive and convective fast-ion losses induced by AEs have been characterized in fast-ion phase space. While single RSAEs and TAEs eject resonant fast ions in a convective process directly proportional to the fluctuation amplitude, delta B/B, the overlapping of multiple RSAE and TAE spatial structures and wave-particle resonances leads to a large diffusive loss, scaling as (delta B/B)(2). In beam heated discharges, coherent fast-ion losses have been observed primarily due to TAEs. Core localized, low amplitude NBI driven RSAEs have not been observed to cause significant coherent fast-ion losses. The temporal evolution of the confined fast-ion profile in the presence of RSAEs and TAEs has been monitored with high spatial and temporal resolution. A large drop in the central fast-ion density due to many RSAEs has been observed as q(min) passes through an integer. The AE radial and poloidal structures have been obtained with unprecedented details using a fast SXR as well as 1D and 2D ECE radiometers. GOURDON and HAGIS simulations have been performed to identify the orbit topology of the escaping ions and study the transport mechanisms. Both passing and trapped ions are strongly redistributed by AEs.
VL - 51
SN - 0029-5515
IS - 10
U1 - FP
U2 - PDG
U5 - 99af23813259e2ea3e780644e8d3b410
ER -
TY - JOUR
T1 - Measurements and modeling of Alfven eigenmode induced fast ion transport and loss in DIII-D and ASDEX Upgrade
JF - Physics of Plasmas
Y1 - 2011
A1 - VanZeeland, M. A.
A1 - Heidbrink, W. W.
A1 - Fisher, R. K.
A1 - Munoz, M. G.
A1 - Kramer, G. J.
A1 - Pace, D. C.
A1 - White, R. B.
A1 - Akaslompolo, S.
A1 - Austin, M. E.
A1 - Boom, J. E.
A1 - Classen, I.G.J.
A1 - da Graca, S.
A1 - Geiger, B.
A1 - Gorelenkova, M.
A1 - Gorelenkov, N. N.
A1 - Hyatt, A. W.
A1 - Luhmann, N.
A1 - Maraschek, M.
A1 - McKee, G. R.
A1 - Moyer, R. A.
A1 - Muscatello, C. M.
A1 - Nazikian, R.
A1 - Park, H.
A1 - Sharapov, S.
A1 - Suttrop, W.
A1 - Tardini, G.
A1 - Tobias, B. J.
A1 - Zhu, Y. B.
KW - ALPHA-PARTICLE LOSSES
KW - AXISYMMETRICAL TOROIDAL PLASMAS
KW - D TOKAMAK
KW - DRIVEN
KW - FUSION TEST
KW - REACTOR
KW - SIMULATIONS
AB - Neutral beam injection into reversed magnetic shear DIII-D and ASDEX Upgrade plasmas produces a variety of Alfvenic activity including toroidicity-induced Alfven eigenmodes and reversed shear Alfven eigenmodes (RSAEs). These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and increased drive due to multiple higher order resonances. Scans of injected 80 keV neutral beam power on DIII-D showed a transition from classical to AE dominated fast ion transport and, as previously found, discharges with strong AE activity exhibit a deficit in neutron emission relative to classical predictions. By keeping beam power constant and delaying injection during the current ramp, AE activity was reduced or eliminated and a significant improvement in fast ion confinement observed. Similarly, experiments in ASDEX Upgrade using early 60 keV neutral beam injection drove multiple unstable RSAEs. Periods of strong RSAE activity are accompanied by a large (peak delta S-n/S-n approximate to 60%) neutron deficit. Losses of beam ions modulated at AE frequencies were observed using large bandwidth energy and pitch resolving fast ion loss scintillator detectors and clearly identify their role in the process. Modeling of DIII-D loss measurements using guiding center following codes to track particles in the presence of ideal magnetohydrodynamic (MHD) calculated AE structures (validated by comparison to experiment) is able to reproduce the dominant energy, pitch, and temporal evolution of these losses. While loss of both co and counter current fast ions occurs, simulations show that the dominant loss mechanism observed is the mode induced transition of counter-passing fast ions to lost trapped orbits. Modeling also reproduces a coherent signature of AE induced losses and it was found that these coherent losses scale proportionally with the amplitude; an additional incoherent contribution scales quadratically with the mode amplitude. (C) 2011 American Institute of Physics.

VL - 18
SN - 1070-664X
UR - http://www.physics.uci.edu/~wwheidbr/papers/MVZ_APS10.pdf
IS - 5
N1 - ISI Document Delivery No.: 785EFTimes Cited: 0Cited Reference Count: 49
U1 - FP

U2 - PDG

U5 - 5e038029a8f71e483e58ea7c6ffa763a
ER -