TY - Generic
T1 - Carbon transport in the stochastic magnetic boundary of TEXTOR
Y1 - 2009
A1 - Telesca, G.
A1 - Delabie, E.
A1 - Schmitz, O.
A1 - Brezinsek, S.
A1 - Finken, K.H.
A1 - von Hellermann, M.
A1 - Jakubowski, M.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Pospieszczyk, A.
A1 - Samm, U.
A1 - Tokar, M.
A1 - Unterberg, B.
A1 - Van Oost, G.
AB - For given conditions, significant change in main particle and carbon transport is observed in TEXTOR under the action of the Dynamic Ergodic Divertor, DED, operating both in 6/2 and 3/1 basic modes. In particular, the stochastic layer created at the plasma edge by the applied perturbing field, is responsible for the so called pump out, PO, effect (observed in DIII-D and on JET during experiments of ELM mitigation) characterized by a decrease in the plasma density and the reduction in the intrinsic carbon concentration in the plasma core. For a sufficiently high value of the applied field strength, in DED 3/1 basic operational mode a 3/1 island connects to the wall, with related further enhancement of particle transport. With respect to carbon, this phenomenon simply leads to a further carbon de-contamination from the central plasma. (C) 2009 Elsevier B.V. All rights reserved.
PB - Elsevier Science Bv
UR - ://000267747300053
N1 - ISI Document Delivery No.: 467ODTimes Cited: 1Cited Reference Count: 15
U1 - Fusion Physics
U5 - 166f1acb7f79129dd185f0873066d048
ER -
TY - Generic
T1 - The influence of resonant magnetic perturbations on edge transport in limiter H-mode plasmas in TEXTOR
Y1 - 2009
A1 - Unterberg, B.
A1 - Abdullaev, S. S.
A1 - Coenen, J. W.
A1 - Finken, K.H.
A1 - Frerichs, H.
A1 - Jakubowski, M. W.
A1 - Kalupin, D.
A1 - Kantor, M. Y.
A1 - Kramer-Flecken, A.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Soldatov, S.
A1 - Spakman, G. W.
A1 - Stoschus, H.
A1 - Tokar, M. Z.
A1 - van Wassenhove, G.
A1 - Xu, Y.
A1 - Zimmermann, O.
AB - In this contribution, we report on experimental results on edge transport in limiter H-mode plasmas in TEXTOR under the influence of the Dynamic Ergodic Divertor (DED). These plasmas are characterized by a pedestal structure mainly visible in the electron density, resulting in increased electron pressure gradients of up to 30 kPa/m over a pedestal width of 25 mm at high pedestal collisionalities (nu(e.) = 1 - 10), and with high frequency ELMs in the range of 300-1500 Hz. Under the influence of DED the pedestal pressure is gradually reduced and completely collapses to L-mode when the laminar zone extends all the way across the pedestal width. Toroidal plasma rotation is maintained at H-mode levels by the torque introduced by DED in the stochastic region. The perturbed magnetic topology has been optimized to access conditions with a density pump-out which are strongly governed by wall pumping capabilities in TEXTOR. (C) 2009 Elsevier B.V. All rights reserved.
PB - Elsevier Science Bv
UR - ://000267747300081
N1 - ISI Document Delivery No.: 467ODTimes Cited: 1Cited Reference Count: 13
U1 - Fusion Physics
U5 - 51d7380bd6f298783cdb2086019f845e
ER -
TY - Generic
T1 - Particle confinement control with resonant magnetic perturbations at TEXTOR
Y1 - 2009
A1 - Schmitz, O.
A1 - Coenen, J. W.
A1 - Frerichs, H.
A1 - Kantor, M.
A1 - Lehnen, M.
A1 - Unterberg, B.
A1 - Brezinsek, S.
A1 - Clever, M.
A1 - Evans, T.
A1 - Finken, K.H.
A1 - Jakubowski, M.
A1 - Kraemer-Flecken, A.
A1 - Phillips, V.
A1 - Reiter, D.
A1 - Samm, U.
A1 - Spakman, G. W.
A1 - Telesca, G.
AB - Two very contrary particle confinement stages were obtained at TEXTOR-DED by application of resonant magnetic perturbations. On the one hand a spontaneous build up of the total number of particles N-tot with correlated increase in the particle confinement time tau(p) was observed and on the other hand a controlled decrease of N-tot and tau(p) - the so called stochastic particle pump out is seen. Numerical analysis of the perturbed magnetic field topology shows that both domains can be distinguished by the ratio of short connection length field lines touching a specific resonant flux surface (here the q = 5/2 surface) to the complete perturbed layer width. During improved particle confinement, the hyperbolic fixed points (X-points) of the pitch resonant islands are directly connected to the DED target followed by an less than or similar to 40% increase in tau(p). The subsequent increase in the E x B shear rate Omega(ExB) at the q = 5/2 surface and a steepening of del n(e)(r) suggests a reduction of the radial particle transport. On the opposite, complete stochastisation of this island chain, i.e. a predominant diffusive field line characteristics, causes a less than or similar to 30% decrease of tau(p) with a reduction in Omega(ExB) at the q = 5/2 surface and del n(e)(r) indicating enhanced effective outward particle transport. (C) 2009 Elsevier B.V. All rights reserved.
PB - Elsevier Science Bv
UR - ://000267747300076
N1 - ISI Document Delivery No.: 467ODTimes Cited: 3Cited Reference Count: 22
U1 - Fusion Physics
U5 - 73f061c9c94301e5fd84d7ef58e4822b
ER -
TY - JOUR
T1 - Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR
JF - Plasma Physics and Controlled Fusion
Y1 - 2008
A1 - Bozhenkov, S. A.
A1 - Lehnen, M.
A1 - Finken, K.H.
A1 - Jakubowski, M. W.
A1 - R C Wolf
A1 - R. Jaspers
A1 - Kantor, M.
A1 - Marchuk, O. V.
A1 - Uzgel, E.
A1 - van Wassenhove, G.
A1 - Zimmermann, O.
A1 - Reiter, D.
KW - AVALANCHE
KW - DIII-D
KW - DISCHARGES
KW - DYNAMICS
KW - FAST PLASMA SHUTDOWN
KW - ITER
KW - JET
KW - JT-60U TOKAMAK
KW - SYNCHROTRON-RADIATION
KW - TERMINATION
AB - Runaway electrons represent a serious problem for the reliable operation of the future experimental tokamak ITER. Due to the multiplication factor of exp(50) in the avalanche even a few seed runaway electrons will result in a beam of high energetic electrons that is able to damage the machine. Thus suppression of runaway electrons is a task of great importance, for which we present here a systematic study of runaway electrons following massive gas injection in TEXTOR. Argon injection can cause the generation of runaways carrying up to 30% of the initial plasma current, while disruptions triggered by injection of helium or of mixtures of argon (5%, 10%, 20%) with deuterium are runaway free. Disruptions caused by argon injection finally become runaway free for very large numbers of injected atoms. The appearance/absence of runaway electrons is related to the fraction of atoms delivered to the plasma centre. This so-called mixing efficiency is deduced from a 0D model of the current quench. The estimated mixing efficiency is 3% for argon, 15% for an argon/deuterium mixture and about 40% for helium. A low mixing efficiency of high-Z impurities can have a strong implication for the design of the disruption mitigation system for ITER. However, a quantitative prediction requires a better understanding of the mixing mechanism.
VL - 50
SN - 0741-3335
UR - ://000259254800009
N1 - ISI Document Delivery No.: 349BWTimes Cited: 0Cited Reference Count: 51
U1 - Fusion Physics
U5 - 4ec9e45ba09639a9f235df5281ec7419
ER -
TY - JOUR
T1 - Identification and analysis of transport domains in the stochastic boundary of TEXTOR-DED for different mode spectra
JF - Nuclear Fusion
Y1 - 2008
A1 - Schmitz, O.
A1 - Jakubowski, M. W.
A1 - Frerichs, H.
A1 - Harting, D.
A1 - Lelmen, M.
A1 - Unterberg, B.
A1 - Abduallaev, S. S.
A1 - Brezinsek, S.
A1 - Classen, I.
A1 - Evans, T.
A1 - Feng, Y.
A1 - Finken, K.H.
A1 - Kantor, M.
A1 - Reiter, D.
A1 - Samm, U.
A1 - Schweer, B.
A1 - Sergienko, G.
A1 - Spakman, G. W.
A1 - Tokar, M.
A1 - Uzgel, E.
A1 - R C Wolf
KW - DYNAMIC ERGODIC DIVERTOR
KW - ELMs
KW - LAYER
KW - OPERATION
KW - PLASMA
KW - TOKAMAK
AB - At the TEXTOR tokamak an external resonant magnetic perturbation is applied with the dynamic ergodic divertor to control the edge transport properties. The approaches to analyse the impact of such a kind of edge stochastization on transport apply mostly a shell-like picture which includes a dependence of transport from magnetic field topology in the radial direction only. In this paper multiple experimental evidence is presented in contrast to these approaches the perturbation applied forms a poloidally heterogenous edge layer in which the transport characteristics are determined by the poloidally alternating field line behaviour. A thorough analysis of density and temperature profiles and their gradients for base mode spectra with poloidal/toroidal mode numbers of m/n = 12/4 and m/n = 6/2 is worked out in comparison with the modelled magnetic field topology and results from three dimensional transport modelling with EMC3/EIRENE. Hereby two poloidally adjacent transport domains are identified for the first time in such detail. A domain representing a helical scrape off layer is formed by field lines with short connection and therefore prevailing parallel transport to the wall elements. Here, the field lines are clustered into extended flux tubes embedded into a long connection length ergodic domain with diffusive transport characteristics and enhanced radial transport.
VL - 48
SN - 0029-5515
UR - ://000255131200010
N1 - ISI Document Delivery No.: 290ODTimes Cited: 1Cited Reference Count: 37
U1 - Fusion Physics
U5 - e27c6e3365bc495020da8183d8ba0216
ER -
TY - JOUR
T1 - Experimental and theoretical analyses of penetration processes of externally applied rotating helical magnetic perturbation fields in TEXTOR and HYBTOK-II
JF - Plasma Physics and Controlled Fusion
Y1 - 2007
A1 - Kikuchi, Y.
A1 - de Bock, M. F. M.
A1 - Finken, K.H.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kraemer-Flecken, A.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Loewenbrueck, K.
A1 - Matsunaga, G.
A1 - Reiser, D.
A1 - Samm, U.
A1 - Sewell, G.
A1 - Takamura, S.
A1 - Unterberg, B.
A1 - R C Wolf
A1 - Zimmermann, O.
VL - 49
SN - 0741-3335
UR - ://000246591400012
N1 - Kikuchi, Y. de Bock, M. F. M. Finken, K. H. Jakubowski, M. Jaspers, R. Koslowski, H. R. Kraemer-Flecken, A. Lehnen, M. Liang, Y. Loewenbrueck, K. Matsunaga, G. Reiser, D. Samm, U. Sewell, G. Takamura, S. Unterberg, B. Wolf, R. C. Zimmermann, O.Sp. Iss. SI
U1 - Fusion Physics
U2 - Instrumentation development
U5 - fc4f8617d89681f85cdafb842ec24ab8
ER -
TY - JOUR
T1 - The effect of the magnetic topology on particle recycling in the ergodic divertor of TEXTOR
JF - Journal of Nuclear Materials
Y1 - 2007
A1 - Lehnen, M.
A1 - Abdullaev, S. S.
A1 - Brezinsek, S.
A1 - Finken, K.H.
A1 - Harting, D.
A1 - von Hellermann, M.
A1 - Jakubowski, M. W.
A1 - R. Jaspers
A1 - Kirschner, A.
A1 - Pospieszczyk, A.
A1 - Reiter, D.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Sergienko, G.
A1 - Unterberg, B.
A1 - Wolf, R.
VL - 363
SN - 0022-3115
UR - ://000247657200065
N1 - Lehnen, M. Abdullaev, S. S. Brezinsek, S. Finken, K. H. Harting, D. von Hellermann, M. Jakubowski, M. W. Jaspers, R. Kirschner, A. Pospieszczyk, A. Reiter, D. Samm, U. Schmitz, O. Sergienko, G. Unterberg, B. Wolf, R.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - b5b13c04f50b0ad549475f5b84ee2d2d
ER -
TY - JOUR
T1 - Impact of stochastic magnetic fields on plasma rotation and radial electric fields in the plasma edge of the tokamak TEXTOR
JF - Journal of Nuclear Materials
Y1 - 2007
A1 - Unterberg, B.
A1 - Busch, C.
A1 - De Bock, M.
A1 - Coenen, J. W.
A1 - Finken, K.H.
A1 - Jachmich, S.
A1 - Jakubowski, M. W.
A1 - Kikuchi, Y.
A1 - Kramer-Flecken, A.
A1 - Lehnen, M.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Soldatov, S.
A1 - Tokar, M. Z.
A1 - von Hellermann, M.
A1 - R C Wolf
A1 - Xu, Y.
KW - electric field
KW - plasma flow
KW - stochastic boundary
KW - TEXTOR
AB - In this contribution we report on spectroscopic measurements of plasma rotation and the radial electric field in the plasma boundary under the operation of the dynamic ergodic divertor in TEXTOR. Under the influence of the stochastic magnetic field we observe an increase of both poloidal and toroidal rotation of carbon nuclei into ion-diamagnetic drift/co-current direction. With static magnetic perturbation the electric field in the ergodic region increases by 10 kV/m and becomes positive. Application of dynamic perturbation leads to a comparable change of the rotation, independent of the direction of the rotation of the DED field and only depending on the degree of ergodization. We introduce a model to explain the experimental findings by the onset of transverse currents in the ergodic region and a subsequent torque onto the plasma. (c) 2007 Published by Elsevier B.V.
VL - 363
SN - 0022-3115
UR - ://000247657200122
N1 - ISI Document Delivery No.: 184QQ
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 279110ab4377e4b6056177db88f615ca
ER -
TY - JOUR
T1 - Influence of the dynamic ergodic divertor on transport properties in TEXTOR
JF - Nuclear Fusion
Y1 - 2007
A1 - Finken, K.H.
A1 - Unterberg, B.
A1 - Xu, Y.
A1 - Abdullaev, S. S.
A1 - Jakubowski, M.
A1 - Lehnen, M.
A1 - de Bock, M. F. M.
A1 - Bozhenkov, S.
A1 - Brezinsek, S.
A1 - Busch, C.
A1 - Classen, I.G.J.
A1 - Coenen, J. W.
A1 - Harting, D.
A1 - von Hellermann, M.
A1 - Jachmich, S.
A1 - Jaspers, R. J. E.
A1 - Kikuchi, Y.
A1 - Kramer-Flecken, A.
A1 - Liang, Y.
A1 - Mitri, M.
A1 - Peleman, P.
A1 - Pospieszczyk, A.
A1 - Reiser, D.
A1 - Reiter, D.
A1 - Samm, U.
A1 - Schega, D.
A1 - Schmitz, O.
A1 - Soldatov, S.
A1 - Van Schoor, M.
A1 - Vergote, M.
A1 - Weynants, R. R.
A1 - Wolf, R.
A1 - Zimmermann, O.
VL - 47
SN - 0029-5515
UR - ://000248499800021
N1 - Finken, K. H. Unterberg, B. Xu, Y. Abdullaev, S. S. Jakubowski, M. Lehnen, M. de Bock, M. F. M. Bozhenkov, S. Brezinsek, S. Busch, C. Classen, I. G. J. Coenen, J. W. Harting, D. von Hellermann, M. Jachmich, S. Jaspers, R. J. E. Kikuchi, Y. Kraemer-Flecken, A. Liang, Y. Mitri, M. Peleman, P. Pospieszczyk, A. Reiser, D. Reiter, D. Samm, U. Schega, D. Schmitz, O. Soldatov, S. Van Schoor, M. Vergote, M. Weynants, R. R. Wolf, R. Zimmermann, O.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - bd9967a013a7adee8861f5089715b408
ER -
TY - JOUR
T1 - Improved confinement due to open ergodic field lines imposed by the dynamic ergodic divertor in TEXTOR
JF - Physical Review Letters
Y1 - 2007
A1 - Finken, K.H.
A1 - Abdullaev, S. S.
A1 - Jakubowski, M. W.
A1 - de Bock, M. F. M.
A1 - Bozhenkov, S.
A1 - Busch, C.
A1 - von Hellermann, M.
A1 - R. Jaspers
A1 - Kikuchi, Y.
A1 - Kramer-Flecken, A.
A1 - Lehnen, M.
A1 - Schega, D.
A1 - Schmitz, O.
A1 - Spatschek, K. H.
A1 - Unterberg, B.
A1 - Wingen, A.
A1 - R C Wolf
A1 - Zimmermann, O.
VL - 98
SN - 0031-9007
UR - ://000244117400035
N1 - Finken, K. H. Abdullaev, S. S. Jakubowski, M. W. de Bock, M. F. M. Bozhenkov, S. Busch, C. von Hellermann, M. Jaspers, R. Kikuchi, Y. Kraemer-Flecken, A. Lehnen, M. Schega, D. Schmitz, O. Spatschek, K. H. Unterberg, B. Wingen, A. Wolf, R. C. Zimmermann, O.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 7faa0e59aa3deb10e10cc2a21a89e26a
ER -
TY - JOUR
T1 - Runaway losses in ergodized plasmas
JF - Nuclear Fusion
Y1 - 2007
A1 - Finken, K.H.
A1 - Abdullaev, S. S.
A1 - Jakubowski, M. W.
A1 - R. Jaspers
A1 - Lehnen, M.
A1 - Schlickeiser, R.
A1 - Spatschek, K. H.
A1 - Wingen, A.
A1 - Wolf, R.
VL - 47
SN - 0029-5515
UR - ://000245179200004
N1 - Finken, K. H. Abdullaev, S. S. Jakubowski, M. W. Jaspers, R. Lehnen, M. Schlickeiser, R. Spatschek, K. H. Wingen, A. Wolf, R.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 08c035ffd568daaa4312e7c6a00b35ba
ER -
TY - JOUR
T1 - Edge turbulence during the static dynamic ergodic divertor experiments in TEXTOR,
JF - Nuclear Fusion
Y1 - 2007
A1 - Xu, Y.
A1 - Van Schoor, M.
A1 - Weynants, R. R.
A1 - Jachmich, S.
A1 - Vergote, M.
A1 - Jakubowski, M. W.
A1 - Beyer, P.
A1 - Mitri, M.
A1 - Schweer, B.
A1 - Reiser, D.
A1 - Unterberg, B.
A1 - Finken, K.H.
A1 - Lehnen, M.
A1 - R. Jaspers
A1 - TEXTOR team
VL - 47
U1 - Fusion Physics
U2 - Instrumentation development
U5 - bd08b99c797e56d84645c94724f178f9
ER -
TY - JOUR
T1 - Forced magnetic reconnection and field penetration of an externally applied rotating helical magnetic field in the TEXTOR tokamak
JF - Physical Review Letters
Y1 - 2006
A1 - Kikuchi, Y.
A1 - de Bock, M. F. M.
A1 - Finken, K.H.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kraemer-Flecken, A.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Matsunaga, G.
A1 - Reiser, D.
A1 - R C Wolf
A1 - Zimmermann, O.
VL - 97
SN - 0031-9007
UR - ://000240043800032
N1 - Kikuchi, Y. de Bock, M. F. M. Finken, K. H. Jakubowski, M. Jaspers, R. Koslowski, H. R. Kraemer-Flecken, A. Lehnen, M. Liang, Y. Matsunaga, G. Reiser, D. Wolf, R. C. Zimmermann, O.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 9a7b6e14cd50e6d1f3508e04cbe06c5e
ER -
TY - JOUR
T1 - Losses of runaway electrons during ergodization
JF - Nuclear Fusion
Y1 - 2006
A1 - Finken, K.H.
A1 - Abdullaev, S. S.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Lehnen, M.
A1 - Zimmermann, O.
VL - 46
SN - 0029-5515
UR - ://000237464500005
N1 - Finken, K. H. Abdullaev, S. S. Jakubowski, M. Jaspers, R. Lehnen, M. Zimmermann, O.
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 6008b49b5633251bad4fb08662bedf84
ER -
TY - JOUR
T1 - Overview of experiments with the dynamic ergodic divertor on TEXTOR
JF - Contributions to Plasma Physics
Y1 - 2006
A1 - Finken, K.H.
A1 - Abdullaev, S.
A1 - Biel, W.
A1 - de Bock, M. F. M.
A1 - Brezinsek, S.
A1 - Busch, C.
A1 - Classen, I.
A1 - Harting, D.
A1 - von Hellermann, M.
A1 - Jachmich, S.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Kikuchi, Y.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Kobayashi, M.
A1 - Nicolai, A.
A1 - Pospieszczyk, A.
A1 - Reiter, D.
A1 - Van Rompuy, T.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Sergienko, G.
A1 - Unterberg, B.
A1 - Westerhof, E.
A1 - R C Wolf
A1 - Zimmermann, O.
KW - edge physics
KW - ergodic divertor
KW - ergodization
KW - laminar zone
KW - MAGNETIC-FIELD
KW - MAPS
KW - TOKAMAK
KW - TRANSPORT
AB - The Dynamic Ergodic Divertor (DED) has recently been taken into operation on TEXTOR. The device is rather flexible and allows the investigation of very different questions. In the present context we concentrate on the divertor aspect and on results of the m/n=12/4 base mode. The DED-field generates the proper ergodic zone and an area of open magnetic field lines, the laminar zone and the tangle structure. The properties of the laminar zone resemble the divertor region of a poloidal divertor. However, the distribution of the density and temperature is highly 3D and strongly related to the structure of the laminar and ergodic zones. The structures of the heat and particle fluxes to the wall agree well with the predicted patterns. A prominent feature of the ergodization is the creation of an edge electric field which results in a rotation of the plasma. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
VL - 46
SN - 0863-1042
UR - ://000240895600007
N1 - ISI Document Delivery No.: 089QM
U1 - Fusion Physics
U2 - Instrumentation development
U5 - dcec18e9246035a216a640bda2b59a1e
ER -
TY - JOUR
T1 - First results from the dynamic ergodic divertor at TEXTOR
JF - Journal of Nuclear Materials
Y1 - 2005
A1 - Lehnen, M.
A1 - Abdullaev, S. S.
A1 - Biel, W.
A1 - Brezinsek, S.
A1 - Finken, K.H.
A1 - Harting, D.
A1 - von Hellermann, M.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Kobayashi, M.
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Matsunaga, G.
A1 - Pospieszczyk, A.
A1 - Reiter, D.
A1 - Van Rompuy, T.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Sergienko, G.
A1 - Unterberg, B.
A1 - Wolf, R.
A1 - Zimmermann, O.
VL - 337-39
SN - 0022-3115
UR - ://000227789500033
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 9de03d26735d91bb5a1627496c67e4b5
ER -
TY - JOUR
T1 - Helium exhaust experiments on JET with Type I ELMs in H-mode and with Type III ELMs in ITB discharges
JF - Nuclear Fusion
Y1 - 2005
A1 - Zastrow, K. D.
A1 - Cox, S. J.
A1 - von Hellermann, M. G.
A1 - O'Mullane, M. G.
A1 - Stork, D.
A1 - Brix, M.
A1 - Challis, C. D.
A1 - Coffey, I. H.
A1 - Dux, R.
A1 - Finken, K.H.
A1 - Giroud, C.
A1 - Hillis, D.
A1 - Hogan, J. T.
A1 - Lawson, K. D.
A1 - Loarer, T.
A1 - Meigs, A. G.
A1 - Morgan, P. D.
A1 - Stamp, M. R.
A1 - Whiteford, A. D.
VL - 45
SN - 0029-5515
UR - ://000227920700003
U1 - Fusion Physics
U2 - Instrumentation development
U5 - d7078f03a665a2644dc9e62beec25c03
ER -
TY - JOUR
T1 - Toroidal plasma rotation induced by the Dynamic Ergodic Divertor in the TEXTOR tokamak
JF - Physical Review Letters
Y1 - 2005
A1 - Finken, K.H.
A1 - Abdullaev, S. S.
A1 - de Bock, M. F. M.
A1 - von Hellermann, M.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Nicolai, A.
A1 - R C Wolf
A1 - Zimmermann, O.
A1 - de M. Baar
A1 - Bertschinger, G.
A1 - Biel, W.
A1 - Brezinsek, S.
A1 - Busch, C.
A1 - Donne, A. J. H.
A1 - Esser, H. G.
A1 - Farshi, E.
A1 - Gerhauser, H.
A1 - Giesen, B.
A1 - Harting, D.
A1 - Hoekzema, J. A.
A1 - Hogeweij, G. M. D.
A1 - Huttemann, P. W.
A1 - Jachmich, S.
A1 - Jakubowska, K.
A1 - Kalupin, D.
A1 - Kelly, F.
A1 - Kikuchi, Y.
A1 - Kirschner, A.
A1 - Koch, R.
A1 - Korten, M.
A1 - Kreter, A.
A1 - Krom, J.
A1 - Kruezi, U.
A1 - Lazaros, A.
A1 - Litnovsky, A.
A1 - Loozen, X.
A1 - Cardozo, N. J. L.
A1 - Lyssoivan, A.
A1 - Marchuk, O.
A1 - Matsunaga, G.
A1 - Mertens, P.
A1 - Messiaen, A.
A1 - Neubauer, O.
A1 - Noda, N.
A1 - Philipps, V.
A1 - Pospieszczyk, A.
A1 - Reiser, D.
A1 - Reiter, D.
A1 - Rogister, A. L.
A1 - Sakamoto, M.
A1 - Savtchkov, A.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Schorn, R. P.
A1 - Schweer, B.
A1 - Schüller, F. C.
A1 - Sergienko, G.
A1 - Spatschek, K. H.
A1 - Telesca, G.
A1 - Tokar, M.
A1 - Uhlemann, R.
A1 - Unterberg, B.
A1 - Van Oost, G.
A1 - Van Rompuy, T.
A1 - van Wassenhove, G.
A1 - Westerhof, E.
A1 - Weynants, R.
A1 - Wiesen, S.
A1 - Xu, Y. H.
VL - 94
SN - 0031-9007
UR - ://000226308000042
U1 - Fusion Physics
U2 - Instrumentation development
U5 - b0aa6a41067f7b66872ca3c5e1152983
ER -
TY - JOUR
T1 - Background and initial experiments with the dynamic ergodic divertor on TEXTOR
JF - Fusion Science and Technology
Y1 - 2005
A1 - Finken, K.H.
A1 - Abdullaev, S. S.
A1 - de Bock, M. F. M.
A1 - Giesen, B.
A1 - von Hellermann, M.
A1 - Hogeweij, G. M. D.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Kobayashi, M.
A1 - Koslowski, H. R.
A1 - Lehnen, M.
A1 - Matsunaga, G.
A1 - Neubauer, O.
A1 - Pospieszczyk, A.
A1 - Samm, U.
A1 - Schweer, B.
A1 - Wolf, R.
VL - 47
SN - 1536-1055
UR - ://000226876100005
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 9b822286095602846b42e4e556164451
ER -
TY - JOUR
T1 - Disruptions and their mitigation in TEXTOR
JF - Fusion Science and Technology
Y1 - 2005
A1 - Finken, K.H.
A1 - R. Jaspers
A1 - Kramer-Flecken, A.
A1 - Savtchkov, A.
A1 - Lehnen, M.
A1 - Waidmann, G.
VL - 47
SN - 1536-1055
UR - ://000226876100021
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 79e515e486aae315144a99bc09854a98
ER -
TY - JOUR
T1 - Overview of core diagnostics for TEXTOR
JF - Fusion Science and Technology
Y1 - 2005
A1 - Donne, A. J. H.
A1 - de Bock, M. F. M.
A1 - Classen, I.G.J.
A1 - von Hellermann, M. G.
A1 - Jakubowska, K.
A1 - R. Jaspers
A1 - Barth, C. J.
A1 - van der Meiden, H. J.
A1 - Oyevaar, T.
A1 - van de Pol, M.J.
A1 - Varshney, S. K.
A1 - Bertschinger, G.
A1 - Biel, W.
A1 - Busch, C.
A1 - Finken, K.H.
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Kreter, A.
A1 - Liang, Y.
A1 - Oosterbeek, H.
A1 - Zimmermann, O.
A1 - Telesca, G.
A1 - Verdoolaege, G.
A1 - Domier, C.W.
A1 - N C Luhmann Jr.
A1 - Mazzucato, E.
A1 - Munsat, T.
A1 - Park, H.
A1 - Kantor, M.
A1 - Kouprienko, D.
A1 - Alexeev, A.
A1 - Ohdachi, S.
A1 - Korsholm, S.
A1 - Woskov, P.
A1 - Bindslev, H.
A1 - Meo, F.
A1 - Michelsen, P. K.
A1 - Michelsen, S.
A1 - Nielsen, S.K.
A1 - Tsakadze, E.
A1 - Shmaenok, L.
KW - CONFINED PLASMAS
KW - core diagnostics
KW - diagnostics
KW - FLUCTUATIONS
KW - ION TEMPERATURE-MEASUREMENTS
KW - MHD MODES
KW - MULTIPOSITION THOMSON SCATTERING
KW - PROFILES
KW - RUNAWAY ELECTRONS
KW - RUTHERFORD-SCATTERING
KW - SYNCHROTRON-RADIATION
KW - TEXTOR
KW - TOKAMAK
AB - The diagnostic system of TEXTOR comprises about 50 individual diagnostic devices. Since the start of the Trilateral Euregio Cluster collaboration, part of the emphasis in the experimental program has shifted toward the study of physics processes in the plasma core. To aid these studies several new and advanced core diagnostics have been implemented, whereas a number of other core diagnostics have been upgraded to higher resolution, more channels, and better accuracy. In this paper a brief overview is given of the present set of plasma core diagnostics at TEXTOR.
VL - 47
SN - 1536-1055
UR - ://000226876100017
N1 - ISI Document Delivery No.: 895PT
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 692a947d40f02dd8701c263744ed2317
ER -
TY - JOUR
T1 - Effect of the dynamic ergodic divertor in the TEXTOR tokamak on MHD stability, plasma rotation and transport
JF - Nuclear Fusion
Y1 - 2005
A1 - R C Wolf
A1 - Biel, W.
A1 - de Bock, M. F. M.
A1 - Finken, K.H.
A1 - Gunter, S.
A1 - Hogeweij, G. M. D.
A1 - Jachmich, S.
A1 - Jakubowski, M. W.
A1 - Jaspers, R. J. E.
A1 - Kramer-Flecken, A.
A1 - Koslowski, H. R.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Unterberg, B.
A1 - Varshney, S. K.
A1 - von Hellermann, M.
A1 - Yu, Q.
A1 - Zimmermann, O.
A1 - Abdullaev, S. S.
A1 - Donne, A. J. H.
A1 - Samm, U.
A1 - Schweer, B.
A1 - Tokar, M.
A1 - Westerhof, E.
KW - DIII-D
KW - JET
KW - MAGNETIC PERTURBATIONS
KW - NEOCLASSICAL TEARING MODES
KW - OPERATION
KW - PENETRATION
AB - With the dynamic ergodic divertor in TEXTOR fundamental effects of the coupling of external magnetic field perturbations to the confined plasma have been studied. The non-linear coupling between external (m/n = 12/4) and internal modes (m/n = 3/1) has been investigated. The critical perturbation field (m/n = 3/1) for the excitation of an m/n = 2/1 tearing mode depends not only on the magnitude but also on the direction of the toroidal angular momentum input by neutral beam injection (NBI). Below the excitation threshold of this mode a toroidal spin-up of the plasma has been observed, which only depends on the strength of the perturbation field. It is independent of both the rotation direction of the external perturbation field and the toroidal angular momentum supplied by the NBI.
VL - 45
SN - 0029-5515
UR - ://000234452300029
N1 - ISI Document Delivery No.: 000HQ
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 9640212972cb05453d2e3123751db721
ER -
TY - JOUR
T1 - Transport and divertor properties of the dynamic ergodic divertor
JF - Plasma Physics and Controlled Fusion
Y1 - 2005
A1 - Lehnen, M.
A1 - Abdullaev, S.
A1 - Biel, W.
A1 - de Bock, M. F. M.
A1 - Brezinsek, S.
A1 - Busch, C.
A1 - Classen, I.
A1 - Finken, K.H.
A1 - von Hellermann, M.
A1 - Jachmich, S.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Kikuchi, Y.
A1 - Liang, Y.
A1 - Nicolai, A.
A1 - Pospieszczyk, A.
A1 - Van Rompuy, T.
A1 - Samm, U.
A1 - Schmitz, O.
A1 - Sergienko, G.
A1 - Unterberg, B.
A1 - Wolf, R.
A1 - Zimmermann, O.
VL - 47
SN - 0741-3335
UR - ://000234420700020
N1 - Sp. Iss. SI Suppl. 12B
U1 - Fusion Physics
U2 - Instrumentation development
U5 - de21284c8f358727741ffadfa73702b7
ER -
TY - JOUR
T1 - The dynamic ergodic divertor in the TEXTOR tokamak: plasma response to dynamic helical magnetic field perturbations
JF - Plasma Physics and Controlled Fusion
Y1 - 2004
A1 - Finken, K.H.
A1 - Abdullaev, S. S.
A1 - Biel, W.
A1 - de Bock, M. F. M.
A1 - Busch, C.
A1 - Farshi, E.
A1 - von Hellermann, M.
A1 - Hogeweij, G. M. D.
A1 - Jakubowski, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kraemer-Flecken, A.
A1 - Lazaros, A.
A1 - Lehnen, M.
A1 - Liang, Y.
A1 - Nicolai, A.
A1 - Schmitz, O.
A1 - Unterberg, B.
A1 - Westerhof, E.
A1 - Wolf, R.
A1 - Zimmermann, O.
A1 - de M. Baar
A1 - Bertschinger, G.
A1 - Brezinsek, S.
A1 - Classen, I.G.J.
A1 - Donne, A. J. H.
A1 - Esser, H. G.
A1 - Gerhauser, H.
A1 - Giesen, B.
A1 - Harting, D.
A1 - Hoekzema, J. A.
A1 - Huettemann, P. W.
A1 - Jachmich, S.
A1 - Jakubowska, K.
A1 - Kalupin, D.
A1 - Kelly, F.
A1 - Kikuchi, Y.
A1 - Kirschner, A.
A1 - Koch, R.
A1 - Korten, M.
A1 - Kreter, A.
A1 - Krom, J.
A1 - Kruezi, U.
A1 - Litnovsky, A.
A1 - Loozen, X.
A1 - Cardozo, N. J. L.
A1 - Lyssoivan, A.
A1 - Marchuk, O.
A1 - Mertens, P.
A1 - Messiaen, A.
A1 - Neubauer, O.
A1 - Philipps, V.
A1 - Pospieszczyk, A.
A1 - Reiser, D.
A1 - Reiter, D.
A1 - Rogister, A. L.
A1 - Van Rompuy, T.
A1 - Savtchkov, A.
A1 - Samm, U.
A1 - Schorn, R. P.
A1 - Schüller, F. C.
A1 - Schweer, B.
A1 - Sergienko, G.
A1 - Telesca, H. G.
A1 - Tokar, M.
A1 - Van Oost, G.
A1 - Uhlemann, R.
A1 - van Wassenhove, G.
A1 - Weynants, R.
A1 - Wiesen, S.
A1 - Xu, Y.
VL - 46
SN - 0741-3335
UR - ://000226806300015
N1 - Sp. Iss. SI Suppl. 12B
U1 - Fusion Physics
U2 - Tokamak physics
U5 - 9984b223caeb83be3430b79174aa4588
ER -
TY - JOUR
T1 - Heterodyne ECE diagnostic in the mode detection and disruption avoidance at TEXTOR
JF - Nuclear Fusion
Y1 - 2003
A1 - Kramer-Flecken, A.
A1 - Finken, K.H.
A1 - Udintsev, V.S.
A1 - Larue, H.
A1 - TEXTOR team
VL - 43
SN - 0029-5515
UR - ://000186819100017
U1 - Fusion Physics
U2 - Instrumentation development
U5 - 5c7d2dae8b8f1ec20d6fb867c95d6c82
ER -
TY - JOUR
T1 - Overview of ASDEX upgrade results
JF - Nuclear Fusion
Y1 - 2003
A1 - Zohm, H.
A1 - Angioni, C.
A1 - Arslanbekov, R.
A1 - Atanasiu, C.
A1 - Becker, G.
A1 - Becker, W.
A1 - Behler, K.
A1 - Behringer, K.
A1 - Bergmann, A.
A1 - Bilato, R.
A1 - Bobkov, V.
A1 - Bolshukhin, D.
A1 - Bolzonella, T.
A1 - Borrass, K.
A1 - Brambilla, M.
A1 - Braun, F.
A1 - Buhler, A.
A1 - Carlson, A.
A1 - Conway, G. D.
A1 - Coster, D. P.
A1 - Drube, R.
A1 - Dux, R.
A1 - Egorov, S.
A1 - Eich, T.
A1 - Engelhardt, K.
A1 - Fahrbach, H. U.
A1 - Fantz, U.
A1 - Faugel, H.
A1 - Finken, K.H.
A1 - Foley, M.
A1 - Franzen, P.
A1 - Fuchs, J. C.
A1 - Gafert, J.
A1 - Fournier, K. B.
A1 - Gantenbein, G.
A1 - Gehre, O.
A1 - Geier, A.
A1 - Gernhardt, J.
A1 - Goodman, T.
A1 - Gruber, O.
A1 - Gude, A.
A1 - Gunter, S.
A1 - Haas, G.
A1 - Hartmann, D.
A1 - Heger, B.
A1 - Heinemann, B.
A1 - Herrmann, A.
A1 - Hobirk, J.
A1 - Hofmeister, F.
A1 - Hohenocker, H.
A1 - Horton, L. D.
A1 - Igochine, V.
A1 - Jacchia, A.
A1 - Jakobi, M.
A1 - Jenko, F.
A1 - Kallenbach, A.
A1 - Kardaun, O.
A1 - Kaufmann, M.
A1 - Keller, A.
A1 - Kendl, A.
A1 - Kim, J. W.
A1 - Kirov, K.
A1 - Kochergov, R.
A1 - Kollotzek, H.
A1 - Kraus, W.
A1 - Krieger, K.
A1 - Kurki-Suonio, T.
A1 - Kurzan, B.
A1 - Lang, P. T.
A1 - Lasnier, C.
A1 - Lauber, P.
A1 - Laux, M.
A1 - Leonard, A. W.
A1 - Leuterer, F.
A1 - Lohs, A.
A1 - Lorenz, A.
A1 - Lorenzini, R.
A1 - Maggi, C.
A1 - Maier, H.
A1 - Mank, K.
A1 - Manso, M. E.
A1 - Mantica, P.
A1 - Maraschek, M.
A1 - Martines, E.
A1 - Mast, K. F.
A1 - McCarthy, P.
A1 - Meisel, D.
A1 - Meister, H.
A1 - Meo, F.
A1 - Merkel, P.
A1 - Merkel, R.
A1 - Merkl, D.
A1 - Mertens, V.
A1 - Monaco, F.
A1 - Muck, A.
A1 - Muller, H. W.
A1 - Munich, M.
A1 - Murmann, H.
A1 - Na, Y. S.
A1 - Neu, G.
A1 - Neu, R.
A1 - Neuhauser, J.
A1 - Nguyen, F.
A1 - Nishijima, D.
A1 - Nishimura, Y.
A1 - Noterdaeme, J. M.
A1 - Nunes, I.
A1 - Pautasso, G.
A1 - Peeters, A.G.
A1 - Pereverzev, G.
A1 - Pinches, S. D.
A1 - Poli, E.
A1 - Proschek, M.
A1 - Pugno, R.
A1 - Quigley, E.
A1 - Raupp, G.
A1 - Reich, M.
A1 - Ribeiro, T.
A1 - Riedl, R.
A1 - Rohde, V.
A1 - Roth, J.
A1 - Ryter, F.
A1 - Saarelma, S.
A1 - Sandmann, W.
A1 - Savtchkov, A.
A1 - Sauter, O.
A1 - Schade, S.
A1 - Schilling, H. B.
A1 - Schneider, W.
A1 - Schramm, G.
A1 - Schwarz, E.
A1 - Schweinzer, J.
A1 - Schweizer, S.
A1 - Scott, B. D.
A1 - Seidel, U.
A1 - Serra, F.
A1 - Sesnic, S.
A1 - Sihler, C.
A1 - Silva, A.
A1 - Sips, A.C.C.
A1 - Speth, E.
A1 - Stabler, A.
A1 - Steuer, K. H.
A1 - Stober, J.
A1 - Streibl, B.
A1 - Strumberger, E.
A1 - Suttrop, W.
A1 - Tabasso, A.
A1 - Tanga, A.
A1 - Tardini, G.
A1 - Tichmann, C.
A1 - Treutterer, W.
A1 - Troppmann, M.
A1 - Urano, H.
A1 - Varela, P.
A1 - Vollmer, O.
A1 - Wagner, D.
A1 - Wenzel, U.
A1 - Wesner, F.
A1 - Westerhof, E.
A1 - Wolf, R.
A1 - Wolfrum, E.
A1 - Wursching, E.
A1 - Yoon, S. W.
A1 - Yu, Q.
A1 - Zasche, D.
A1 - Zehetbauer, T.
A1 - Zehrfeld, H. P.
VL - 43
SN - 0029-5515
UR - ://000187838300005
U1 - Fusion Physics
U2 - Tokamak physics
U5 - 988d14e5a44c19882b112fcb8692c1fb
ER -
TY - JOUR
T1 - Overview of JET results
JF - Nuclear Fusion
Y1 - 2003
A1 - Pamela, J.
A1 - Solano, E. R.
A1 - Adams, J. M.
A1 - Agarici, G.
A1 - Agarici, M.
A1 - Akhter, H.
A1 - Albanese, R.
A1 - Alberti, S.
A1 - Allfrey, S.
A1 - Alper, B.
A1 - Alves, D.
A1 - Amarante, J.
A1 - van Amerongen, F.
A1 - Andrew, P.
A1 - Andrew, Y.
A1 - Ane, J. M.
A1 - Angioni, C.
A1 - Antonucci, C.
A1 - Ambrosino, G.
A1 - Apruzzese, G.
A1 - Ariola, M.
A1 - Artaserse, G.
A1 - Artaud, J. F.
A1 - Ascasibar, E.
A1 - Asp, E.
A1 - Axton, M.
A1 - Baciero, A.
A1 - Badarelli, M.
A1 - Baity, W.
A1 - Balbin, R.
A1 - Balme, S.
A1 - Barana, O.
A1 - Baranov, Y.
A1 - Barbato, E.
A1 - Barnsley, R.
A1 - Basiuk, V.
A1 - Bateman, G.
A1 - Baumel, S.
A1 - Bayetti, P.
A1 - Baylor, L.
A1 - Beaumont, B.
A1 - Beaumont, P.
A1 - Becoulet, A.
A1 - Becoulet, M.
A1 - Bekris, M.
A1 - Beldishevski, M.
A1 - Bell, A. C.
A1 - Bennet, P.
A1 - Berger-By, G.
A1 - Berk, H. L.
A1 - Bernabei, S.
A1 - Bertalot, L.
A1 - Bertrand, B.
A1 - Beurskens, M.
A1 - Bibet, P.
A1 - Bickley, A.
A1 - Bigi, M.
A1 - Bilato, R.
A1 - Blackman, T.
A1 - Blanchard, P.
A1 - Blum, J.
A1 - Bolzonella, T.
A1 - Bondeson, A.
A1 - Bongers, W.
A1 - Bonheure, G.
A1 - Bonnin, X.
A1 - Borass, K.
A1 - Borba, D.
A1 - Bosak, K.
A1 - Bosia, P.
A1 - Boyer, H.
A1 - Bracco, G.
A1 - Braithwaite, G. C.
A1 - Breizman, B. N.
A1 - Bremond, S.
A1 - Brennan, P. D.
A1 - Bresslau, J.
A1 - Brezinsek, S.
A1 - Brichero, B.
A1 - Briscoe, F.
A1 - Brix, M.
A1 - Brolatti, G.
A1 - Brown, D. P. D.
A1 - Bruggeman, A.
A1 - Bruschi, A.
A1 - Bryan, S.
A1 - Brzozowski, J.
A1 - Bucalossi, J.
A1 - Buceti, G.
A1 - Buckley, M. A.
A1 - Budd, T.
A1 - Budny, R.
A1 - Buratti, P.
A1 - Butcher, P.
A1 - Buttery, R. J.
A1 - Calabro, G.
A1 - Nichols, C. J. C.
A1 - Callen, J.
A1 - Campbell, D.
A1 - Campling, D. C.
A1 - Cannas, B.
A1 - Capel, A. J.
A1 - Card, P. J.
A1 - Carlstrom, T.
A1 - Castaldo, C.
A1 - Causey, R.
A1 - Cecil, F. E.
A1 - Cesario, R.
A1 - Challis, C.
A1 - Chan, V.
A1 - Chappuis, P.
A1 - Charlet, M.
A1 - Charreau, J. M.
A1 - Cheron, C.
A1 - Child, D.
A1 - Chitarin, G.
A1 - Ciattaglia, S.
A1 - Cirant, S.
A1 - Ciric, D.
A1 - Clarke, R.
A1 - Coad, J. P.
A1 - Coates, P.
A1 - Coccorese, V.
A1 - Cocilovo, V.
A1 - Coda, S.
A1 - Coelho, R.
A1 - Coffey, I.
A1 - Coletti, A.
A1 - Collins, S.
A1 - Conboy, J.
A1 - Conroy, S.
A1 - Conway, G.
A1 - Cooper, S. R.
A1 - Cordey, G.
A1 - Corre, Y.
A1 - Corrigan, G.
A1 - Cortes, S.
A1 - Coster, D.
A1 - Counsell, G. F.
A1 - Cox, M.
A1 - Cox, S. J.
A1 - Cramp, S.
A1 - Crescenzi, C.
A1 - Crisanti, F.
A1 - Cristescu, I.
A1 - Cristescu, I. R.
A1 - Crowley, B.
A1 - Cruz, N.
A1 - Cupido, L.
A1 - Cusack, R.
A1 - Belo, P. D. A.
A1 - Dailey, S.
A1 - Daly, E.
A1 - Damiani, C.
A1 - Darrow, D.
A1 - David, O.
A1 - Davies, N.
A1 - Day, C.
A1 - De Angelis, R.
A1 - de M. Baar
A1 - De Barbieri, O.
A1 - De Benedetti, M.
A1 - DeGrassie, J.
A1 - de la Luna, E.
A1 - P. de Vries
A1 - Degli Agostini, F.
A1 - Dentan, M.
A1 - Dimits, A.
A1 - Dines, A.
A1 - Dobbing, J. A.
A1 - Doceul, L.
A1 - Doncel, J.
A1 - Donné, A.
A1 - Donne, T.
A1 - Dorland, W.
A1 - Dorling, S. E.
A1 - Doyle, P.
A1 - Drozdov, V.
A1 - Dumbrajs, O.
A1 - Dumortier, P.
A1 - Durocher, A.
A1 - Durodie, F.
A1 - Duval, B.
A1 - Dux, R.
A1 - Edlington, T.
A1 - Edwards, A. M.
A1 - Edwards, D. C.
A1 - Edwards, D. T.
A1 - Edwards, P.
A1 - Eich, T.
A1 - Ekedahl, A.
A1 - Elbeze, D.
A1 - Ellingboe, A. R.
A1 - Ellis, R.
A1 - Elsmore, C. G.
A1 - Elzendoorn, B. S. Q.
A1 - Erents, S.K.
A1 - Ericsson, G.
A1 - Eriksson, L.
A1 - Esposito, B.
A1 - Esser, H. G.
A1 - Estrada, T.
A1 - Evrard, M.
A1 - Ewart, C.
A1 - Fanthome, J.
A1 - Farthing, J. W.
A1 - Fasel, D.
A1 - Fasoli, A.
A1 - Felton, R.
A1 - Fenstermacher, M.
A1 - Fenzi, C.
A1 - Fernandes, H.
A1 - Fernandez, A.
A1 - Ferreira, J.
A1 - Fessey, J. A.
A1 - Figueiredo, A.
A1 - Finburg, P.
A1 - Fink, J.
A1 - Finken, K.H.
A1 - Fiorentin, P.
A1 - Fischer, U.
A1 - Fleming, C.
A1 - Forrest, R.
A1 - Fourment, C.
A1 - Franel, B.
A1 - Franzen, P.
A1 - Fredian, T.
A1 - Fricconneeu, J. P.
A1 - Frigione, D.
A1 - Fu, G.
A1 - Fuchs, J. C.
A1 - Fullard, K.
A1 - Fundamenski, W.
A1 - Gabriel, F.
A1 - Gaffert, J.
A1 - Galutschek, E.
A1 - Gans, T.
A1 - Garbet, X.
A1 - Cortes, I. G.
A1 - Garzotti, L.
A1 - Gauthier, E.
A1 - Gedney, J.
A1 - Geier, A.
A1 - Gentile, C.
A1 - Gerasimov, S.
A1 - Geraud, A.
A1 - Ghendrih, P.
A1 - Giannella, R.
A1 - Gill, R. D.
A1 - Gimblett, C.
A1 - Giovannozzi, E.
A1 - Giroud, C.
A1 - Goff, J.
A1 - Gohil, P.
A1 - Gondhalekar, A.
A1 - Goniche, M.
A1 - Goodyear, A.
A1 - Gorelenkov, N.
A1 - Gorini, G.
A1 - Goulding, R.
A1 - Gowers, C. W.
A1 - Graham, M. E.
A1 - Grando, L.
A1 - Granucci, G.
A1 - Graswinckel, M.
A1 - Green, N.
A1 - Greenfield, C.
A1 - Greenough, N.
A1 - Greenwald, M.
A1 - Gregoratto, D.
A1 - Griph, F. S.
A1 - Grisolia, C.
A1 - Grosman, A.
A1 - Grosso, G.
A1 - Gruenhagen, S.
A1 - Gude, A.
A1 - Guenter, S.
A1 - Guenther, K.
A1 - Guerin, C.
A1 - Gugla, M.
A1 - Guigon, A.
A1 - Guirlet, R.
A1 - Gunn, J.
A1 - Haas, G.
A1 - Hackett, L.
A1 - Hacquin, S.
A1 - Hahm, T. S.
A1 - Haist, B.
A1 - Cook, S. H.
A1 - Hamilton, D.
A1 - Hammett, G.
A1 - Handley, R.
A1 - Harling, J. D. W.
A1 - Harrison, J.
A1 - Hartmann, D.
A1 - Haupt, T.
A1 - Hawkes, N. C.
A1 - Hay, J.
A1 - Hayward, I.
A1 - Hedin, J.
A1 - Heesterman, P.
A1 - Heikkinen, J.
A1 - Heinemann, B.
A1 - Helander, P.
A1 - Hellingman, P.
A1 - Hellsten, T.
A1 - Hemming, O. N.
A1 - Hemsworth, R.
A1 - Hender, T. C.
A1 - Henderson, M.
A1 - Hennequin, P.
A1 - Henshaw, A.
A1 - Herrmann, A.
A1 - Hidalgo, C.
A1 - Hill, J.
A1 - Hillis, D.
A1 - Hitchin, M.
A1 - Hoang, T.
A1 - Hobirk, J.
A1 - Hoekzema, F.
A1 - Hoekzema, J. A.
A1 - Hofmann, E.
A1 - Hogan, C.
A1 - Hogben, C.
A1 - Hogeweij, D.
A1 - Homfray, D.
A1 - Horton, A.
A1 - Horton, L. D.
A1 - Hosea, J.
A1 - Hoskins, A. J.
A1 - Hotchin, S.
A1 - Hough, M. R.
A1 - Houlberg, W.
A1 - How, J.
A1 - Howell, D.
A1 - Hron, M.
A1 - Hubbard, A.
A1 - Huber, A.
A1 - Hudson, Z.
A1 - Hume, H.
A1 - Humphries, D.
A1 - Hurd, F.
A1 - Hutchinson, I.
A1 - Hutter, T.
A1 - Huygen, S.
A1 - Huysmans, G.
A1 - Imbeaux, F.
A1 - Ingesson, C.
A1 - Innocente, P.
A1 - Jachmich, S.
A1 - Jackson, G.
A1 - Jardin, S.
A1 - Jarmen, A.
A1 - Jarvis, O. N.
A1 - R. Jaspers
A1 - Jaun, A.
A1 - Jenkins, I.
A1 - Jensen, H. S.
A1 - Joffrin, E.
A1 - Johnson, M. F.
A1 - Johnson, R.
A1 - Jones, E. M.
A1 - Jones, G.
A1 - Jones, H. D.
A1 - Jones, T.
A1 - Jonsson, T.
A1 - Jupen, C.
A1 - Kallenbach, A.
A1 - Kallne, J.
A1 - Karttunen, S.
A1 - Kasparek, W.
A1 - Kaye, A.
A1 - Keeling, D.
A1 - Kelliher, D.
A1 - Kemp, N.
A1 - King, R. F.
A1 - Kinsey, J.
A1 - Kiptily, V.
A1 - Kirov, K.
A1 - Kirschner, A.
A1 - Kiviniemi, T.
A1 - Knight, P.
A1 - Knipe, S.
A1 - Koch, R.
A1 - Kooijman, W.
A1 - Korotkov, A.
A1 - Koslowski, H. R.
A1 - Kramer, G.
A1 - Kraus, W.
A1 - Kritz, A.
A1 - Kruijt, O. G.
A1 - Kurki-Suonio, T.
A1 - La Haye, R. J.
A1 - Labombard, B.
A1 - Laesser, R.
A1 - Lam, N.
A1 - Lamalle, P.
A1 - Land, G.
A1 - Lang, P.
A1 - Lao, L.
A1 - Last, J.
A1 - Laux, M.
A1 - Laviron, C.
A1 - Lawson, K. D.
A1 - Laxaback, M.
A1 - Lazzaro, E.
A1 - Leggate, H.
A1 - Lehnen, M.
A1 - Leigheb, M.
A1 - Lennholm, M.
A1 - Leonard, A.
A1 - Lescure, C.
A1 - Leuterer, F.
A1 - Likin, K.
A1 - X. Litaudon
A1 - Lingier, K.
A1 - Linke, J.
A1 - Lipshultz, B.
A1 - Lister, J.
A1 - Liu, Y.
A1 - Lloyd, G.
A1 - Loarer, T.
A1 - Loarte, A.
A1 - Loesser, D.
A1 - Lomas, P. J.
A1 - Long, F.
A1 - Lonnroth, J.
A1 - Lorenz, A.
A1 - Lotte, P.
A1 - Louche, F.
A1 - Loughlin, M.
A1 - Loving, A.
A1 - Luce, T.
A1 - Lucock, R. M. A.
A1 - Lyssoivan, A.
A1 - Maagdenberg, J.
A1 - Maas, A.
A1 - MacGregor, J.
A1 - Macheta, P.
A1 - Maddaluno, G.
A1 - G. P. Maddison
A1 - Maget, P.
A1 - Magne, R.
A1 - Mahdavi, A.
A1 - J. Mailloux
A1 - Maisonnier, D.
A1 - Manickam, J.
A1 - Mank, G.
A1 - Manso, M. E.
A1 - Mantica, P.
A1 - Mantsinen, M.
A1 - Maraschek, M.
A1 - Marcuzzi, D.
A1 - Marinucci, M.
A1 - Marmillod, P.
A1 - Martin, D.
A1 - Martin, M.
A1 - Martin, Y.
A1 - Mast, K. F.
A1 - Mattei, M.
A1 - Matthews, G. F.
A1 - Mayer, M.
A1 - Mayoral, M. L.
A1 - Mazon, D.
A1 - Mazzone, G.
A1 - Mazzucato, E.
A1 - McCarron, E.
A1 - McClements, K.
A1 - McCormick, K.
A1 - McCullen, P. A.
A1 - McCune, D.
A1 - McDonald, D.
A1 - Mead, M.
A1 - Medina, F.
A1 - Meigs, A.
A1 - Melissen, W.
A1 - Meneses, L.
A1 - Meo, F.
A1 - Mertens, P.
A1 - Mertens, V.
A1 - Messiaen, A.
A1 - Milani, F.
A1 - Miller, A.
A1 - Mills, S.
A1 - Milner, J.
A1 - Mlynar, J.
A1 - Monakhov, I.
A1 - Monier-Garbet, P.
A1 - Monk, R.
A1 - Monney, R.
A1 - Moreau, D.
A1 - Moreau, P.
A1 - Morgan, P. D.
A1 - Morris, A. W.
A1 - Morris, J.
A1 - Mort, J. L.
A1 - Mossessian, D.
A1 - Muck, A.
A1 - Mueller, G.
A1 - Murakami, M.
A1 - Murari, A.
A1 - Murdock, D.
A1 - Na, Y. S.
A1 - Nabais, F.
A1 - M F F Nave
A1 - Nazikian, R.
A1 - Negus, C.
A1 - Neil, G. F.
A1 - Neilson, J. D.
A1 - Nelson, B.
A1 - Neu, R.
A1 - Nevins, W.
A1 - Newbert, G. J.
A1 - Nguyen, F.
A1 - Nichols, K.
A1 - Nicolai, A.
A1 - Nicolas, L.
A1 - Nielsen, P.
A1 - Nightingale, M.
A1 - Nordman, H.
A1 - Noterdaeme, J. M.
A1 - Nowak, S.
A1 - O'Mullane, M.
A1 - Ongena, J.
A1 - Onjun, T.
A1 - Orchard, J.
A1 - Orsitto, F.
A1 - Osborne, T.
A1 - Palmer, J.
A1 - Panaccione, L.
A1 - Parail, V.
A1 - Parkin, A.
A1 - Parsons, B.
A1 - Pascualotto, R.
A1 - Patel, B.
A1 - Pavlenko, I.
A1 - Peacock, A. T.
A1 - Pearce, R.
A1 - Pecquet, A. L.
A1 - Luna, A. P.
A1 - Peeters, A.
A1 - Penzhorn, R. D.
A1 - Alonso, M. P.
A1 - Pereverzev, G.
A1 - Perevezentsev, A.
A1 - von Thun, C. P.
A1 - Pericoli, V.
A1 - Peruzzo, S.
A1 - Petravich, G.
A1 - Petrizilka, V.
A1 - Petrov, Y.
A1 - Petty, C.
A1 - Phillips, V.
A1 - Piccolo, F.
A1 - Pick, M.
A1 - Pinches, S. D.
A1 - Pinna, T.
A1 - Piosczyk, B.
A1 - Pironti, A.
A1 - Pitcher, C. S.
A1 - Pitts, R.
A1 - Plysnin, V.
A1 - Pochelon, A.
A1 - Podda, S.
A1 - Polinari, P.
A1 - Pomaro, N.
A1 - Popovichev, S.
A1 - Portafaix, C.
A1 - Porter, G.
A1 - Pospieszczyk, A.
A1 - Preece, G.
A1 - Prentice, R.
A1 - Prins, R.
A1 - Proschek, M.
A1 - Pugno, R.
A1 - M. E. Puiatti
A1 - Purahoo, K.
A1 - Rachlew, E.
A1 - Rainford, M.
A1 - Raisback, D.
A1 - Rantamaki, K.
A1 - Rapp, J.
A1 - Rasmussen, D.
A1 - Reiser, D.
A1 - Reiter, D.
A1 - Rewoldt, G.
A1 - Ribeiro, T. M.
A1 - Riccardo, V.
A1 - Righi, E.
A1 - Rimini, F. G.
A1 - Riva, M.
A1 - Robinson, D. S.
A1 - Robinson, S. A.
A1 - Robson, D. W.
A1 - Roccella, M.
A1 - Rodrigo, L. R.
A1 - Rogero, G.
A1 - Rogister, A.
A1 - Roguemore, T.
A1 - Rolfe, A.
A1 - Ronden, D.
A1 - Rosanvallon, S.
A1 - Ross, D.
A1 - Rubel, M.
A1 - Ryter, F.
A1 - Saarelma, S.
A1 - Sabathier, F.
A1 - Sabot, R.
A1 - Saibene, G.
A1 - Salavy, J. F.
A1 - Sall, I.
A1 - Sanchez, J.
A1 - Sanders, S.
A1 - Sanders, S. G.
A1 - Sands, D.
A1 - Sarazin, Y.
A1 - Sartori, F.
A1 - Sartori, R.
A1 - Sattin, F.
A1 - Sauter, O.
A1 - Sborchia, C.
A1 - Scaffidi-Argentina, F.
A1 - Scarabosio, A.
A1 - Schilling, G.
A1 - Schissel, D.
A1 - Schlosser, J.
A1 - Schmidt, G.
A1 - Schmidt, W.
A1 - Schuller, C.
A1 - Schweer, B.
A1 - Schweinzer, J.
A1 - Segui, J. L.
A1 - Semeraro, L.
A1 - Sergienko, G.
A1 - Serra, F.
A1 - Sharapov, S. E.
A1 - Shaw, S. R.
A1 - Siegrist, M.
A1 - Silva, C. A.
A1 - Simpson, D.
A1 - Sipila, S.
A1 - Sips, A.C.C.
A1 - Sjostrand, H.
A1 - Skinner, C.
A1 - Smith, P. G.
A1 - Snipes, J.
A1 - Sonato, P.
A1 - Sousa, J.
A1 - Sozzi, C.
A1 - Spence, J.
A1 - Speth, E.
A1 - Staebler, A.
A1 - Allen, R. S.
A1 - Stagg, R.
A1 - Stakenborg, J.
A1 - Stamp, M. F.
A1 - Stangeby, P.
A1 - Starkey, D.
A1 - Stauton-Lambert, S. A.
A1 - Stephen, A.
A1 - Sterk, A.
A1 - Sterk, A. B.
A1 - Stevens, A.
A1 - Stillerman, J.
A1 - Stober, J.
A1 - Stokes, R.
A1 - Stork, D.
A1 - Strachan, J.
A1 - Stratton, B.
A1 - Stratton, K.
A1 - Stubberfield, P.
A1 - Summers, H. P.
A1 - Surrey, E.
A1 - Sutton, D.
A1 - Suttrop, W.
A1 - Svenson, J.
A1 - Symonds, I.
A1 - Tabares, F.
A1 - Tait, J.
A1 - Tala, T.
A1 - Talarico, C.
A1 - Talbot, A. R.
A1 - Taliercio, C.
A1 - Tam, U.
A1 - Tame, C.
A1 - Tardini, G.
A1 - Tardocchi, M.
A1 - Tartoni, N.
A1 - Tavernier, J.
A1 - Telesca, G.
A1 - Terrington, A. O.
A1 - Testa, D.
A1 - Testoni, P.
A1 - Theis, J. M.
A1 - Thomas, J.
A1 - Thomas, P.
A1 - Thomsen, H.
A1 - Thomsen, K.
A1 - Thumm, M.
A1 - Thyagaraja, C.
A1 - Tichler, J.
A1 - Tigwell, P.
A1 - Tiscornia, T.
A1 - Todd, J. M.
A1 - Tokar, M. Z.
A1 - De Tommasi, G.
A1 - Tran, Q. M.
A1 - Travere, J. M.
A1 - Tresset, G.
A1 - Tribaldos, V.
A1 - Tsitrone, E.
A1 - Tuccillo, A. A.
A1 - Tudisco, O.
A1 - Turker, E.
A1 - Turner, M. M.
A1 - Udintsev, V.
A1 - Unterberg, B.
A1 - Valetta, M. P.
A1 - Valisa, M.
A1 - Valovic, M.
A1 - van Amerongen, F.
A1 - Van de Poll, M.
A1 - Van der Grift, T.
A1 - Van Eester, D.
A1 - Van Gorkorm, J.
A1 - Varela, P.
A1 - Vender, D.
A1 - Veres, G.
A1 - Verhoeven, A.
A1 - Villard, L.
A1 - Villedieu, E.
A1 - Villone, F.
A1 - Vince, J. E.
A1 - von Hellermann, M.
A1 - Vulliez, K.
A1 - Wade, M.
A1 - Wagner, D.
A1 - Walden, A.
A1 - Walker, M.
A1 - Walton, B.
A1 - Watkins, M. L.
A1 - Watson, M. J.
A1 - Weiland, J.
A1 - Weisen, H.
A1 - Werner, A.
A1 - Wesner, F.
A1 - West, P.
A1 - Westerhof, E.
A1 - Weyssow, B.
A1 - Wheatley, M. R.
A1 - Whitehead, A.
A1 - Whitehurst, A.
A1 - Whyte, D.
A1 - Wicks, S. J.
A1 - Widdershoven, L.
A1 - Wienhold, P.
A1 - Wilson, A.
A1 - Wilson, C.
A1 - Wilson, D.
A1 - Wilson, D. J.
A1 - Wilson, D. W.
A1 - Wilson, R.
A1 - Wischmeier, M.
A1 - Wolf, R.
A1 - Wouters, P.
A1 - Yorkshades, J. S.
A1 - Young, C.
A1 - Young, D.
A1 - Young, I. D.
A1 - Young, K.
A1 - Zabeo, L.
A1 - Zacek, F.
A1 - Zakharov, L.
A1 - Zanca, P.
A1 - Zastrow, K. D.
A1 - Zeidner, W.
A1 - Zerbini, M.
A1 - Zohm, H.
A1 - Zoletnik, S.
A1 - Zonca, F.
A1 - Zwingman, W.
VL - 43
SN - 0029-5515
UR - ://000187838300003
U1 - Fusion Physics
U2 - Tokamak physics
U5 - dfd7c655e42dd11870332464062d763b
ER -
TY - JOUR
T1 - Mitigation of disruptions by fast helium gas puffs
JF - Nuclear Fusion
Y1 - 2001
A1 - Finken, K.H.
A1 - Mank, G.
A1 - Kramer-Flecken, A.
A1 - R. Jaspers
AB - In order to mitigate the effect of disruptions in tokamaks, it is proposed to inject quickly a relatively large amount of helium; first experiments on this topic have been performed on TEXTOR. For this purpose, a fast valve has been developed which releases 10 mbar L of helium gas within 1 ms; the valve is located at a vessel flange such that a fast response is guaranteed even if it is triggered at the onset of the disruption. The amount of gas is sufficient to exceed the density limit even with low density discharges. The intention of the proposal is to shorten the plasma current decay phase, to reduce halo currents, to suppress runaway electrons and to provide good conditions for the start of the following discharge. In particular, for achieving the last goal, helium is the optimum choice of all the elements. The experiments performed on TEXTOR have proven various of these mitigation aspects: the current decay time is shortened, runaway electrons are expelled by the gas puff and the conditions for the start of the next discharge have neither deteriorated with respect to gas release from wall components nor with respect to excessive impurity production.
VL - 41
SN - 0029-5515
U5 - fc57a33d869e5d86fb6ebcc6b1debaf8
ER -
TY - JOUR
T1 - New diagnostics for physics studies on TEXTOR-94 (invited)
JF - Review of Scientific Instruments
Y1 - 2001
A1 - Donne, A. J. H.
A1 - R. Jaspers
A1 - Barth, C. J.
A1 - Bindslev, H.
A1 - Elzendoorn, B. S. Q.
A1 - van Gorkom, J. C.
A1 - van der Meiden, H. J.
A1 - Oyevaar, T.
A1 - van de Pol, M.J.
A1 - Udintsev, V.S.
A1 - Widdershoven, H. L. M.
A1 - Biel, W.
A1 - Finken, K.H.
A1 - Kramer-Flecken, A.
A1 - Kreter, A.
A1 - Oosterbeek, H.
A1 - Schweer, B.
A1 - Unterberg, B.
A1 - Deng, B.H.
A1 - Domier, C.W.
A1 - N C Luhmann Jr.
A1 - Mazzucato, E.
A1 - Munsat, T.
A1 - Park, H.
A1 - Porte, L.
A1 - Woskov, P.
A1 - Shmaenok, L.
AB - Recently the Dutch, Belgian, and North-Rhine Westphalian Fusion Institutes have consolidated their fusion research on the medium-sized tokamak TEXTOR-94 in the so-called Trilateral Euregio Cluster. To aid the new physics program of TEC, a large number of advanced core diagnostics has recently been implemented. In this article we will discuss the reasoning that has led to the choices of the various diagnostics. Furthermore, we will briefly describe the new diagnostics systems. (C) 2001 American Institute of Physics.
VL - 72
SN - 0034-6748
U5 - d48f1a83aaf085f2376d6ed232687bf5
ER -
TY - JOUR
T1 - A synchrotron radiation diagnostic to observe relativistic runaway electrons in a tokamak plasma
JF - Review of Scientific Instruments
Y1 - 2001
A1 - R. Jaspers
A1 - Cardozo, N. J. L.
A1 - Donne, A. J. H.
A1 - Widdershoven, H. L. M.
A1 - Finken, K.H.
AB - In present day tokamaks runaway electrons can be confined long enough to gain energies in the order of several tens of megaelectron volts. At these energies synchrotron radiation is emitted in the infrared wavelength range which can easily be detected by thermographic cameras. The spectral features of this synchrotron radiation are reviewed. On TEXTOR-94 a diagnostic exploiting this synchrotron radiation has been developed and is presented here. It is shown how to deduce the runaway parameters like runaway energy, pitch angle, runaway current and beam radius from the measurements. Based on the experience at TEXTOR-94 the feasibility of a similar synchrotron diagnostic on the International Thermonuclear Experimental Reactor is discussed. The maximum emission is expected in the wavelength range from 1-5 mum. A beam of 10 MeV runaway electrons with a current of about 15 kA will already be detectable. (C) 2001 American Institute of Physics.
VL - 72
SN - 0034-6748
U5 - 0094ecc91ac31bcbd3ebaee3e4c33137
ER -
TY - JOUR
T1 - Quasistationary high confinement discharges with trans-greenwald density on TEXTOR-94
JF - Physical Review Letters
Y1 - 2000
A1 - Mank, G.
A1 - Messiaen, A. M.
A1 - Ongena, J.
A1 - Unterberg, B.
A1 - Dumortier, P.
A1 - Finken, K.H.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Rapp, J.
A1 - Samm, U.
A1 - van Wassenhove, G.
A1 - Weynants, R. R.
A1 - TEXTOR team
AB - Confinement quality as good as ELM-free H-mode at densities substantially above die Greenwald density limit((n) over bar(e,0)/n(GW) = 1.4) has been obtained in discharges with a radiative boundary under quasistationary conditions for 20 times the energy confinement time. This is achieved by optimizing the gas-fueling rate of RI-mode discharges which tailors their favorable energy confinement and lends to discharges with beta values just below the operational limit beta(n) = 2 of TEXTOR-94, thereby effectively avoiding confinement back transitions or disruptions. In addition, this high-density regime is favorable for helium removal and results in figures of merit tau(p,He)(*)/tau(E) approximate to 10-15, relevant for a future fusion power reactor.
VL - 85
SN - 0031-9007
U5 - d679c92594af854770fedce713c401d7
ER -
TY - JOUR
T1 - Pellet fuelling into radiative improved confinement discharges in TEXTOR-94
JF - Nuclear Fusion
Y1 - 2000
A1 - Hobirk, J.
A1 - Messiaen, A. M.
A1 - Finken, K.H.
A1 - Ongena, J.
A1 - Brix, M.
A1 - R. Jaspers
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Mank, G.
A1 - Rapp, J.
A1 - Telesca, G.
A1 - Unterberg, B.
AB - Normally pellet injection in strongly heated discharges leads at most to a relatively short improvement of the energy and particle confinement times. In contrast to this finding, the radiative improved (RI) mode plasma of TEXTOR-94 is a very well suited target for pellet injection: the interaction of a pellet with the high density plasma together with the radiatively cooled edge leads in the best cases to an improved energy confinement time which lasts to the end of the heating phase. The pellet injection causes at first a density increase; this phase is followed by a quick partial particle loss and later an increase to a quasi-stationary value. Because of the linear density dependence of RI mode confinement this leads to an additional increase in energy confinement time.
VL - 40
SN - 0029-5515
U5 - 3837997950591be2fa71cb06059f09e4
ER -
TY - JOUR
T1 - Scale size of magnetic turbulence in tokamaks probed with 30-MeV electrons
JF - Physical Review Letters
Y1 - 2000
A1 - Entrop, I.
A1 - Cardozo, N. J. L.
A1 - R. Jaspers
A1 - Finken, K.H.
AB - Measurements of synchrotron radiation emitted by 30-MeV runaway electrons in the TEXTOR-94 tokamak show that the runaway population decays after switching on neutral beam injection (NBI). The decay starts only with a significant delay, which decreases with increasing NBI heating power. This delay provides direct evidence of the energy dependence of runaway confinement, which is expected if magnetic modes govern the loss of runaways. Application of the theory by Mynick and Strachan [Phys. Fluids 24, 695 (1981)] yields estimates for the "mode width" (delta) of magnetic perturbations: delta < 0.5 cm in Ohmic discharges, increasing to delta = 4.4 cm for 0.6 MW NBI.
VL - 84
SN - 0031-9007
U5 - 60ac75f98a3459e9479707a564c9c0fd
ER -
TY - JOUR
T1 - Overview of radiative improved mode results on TEXTOR-94
JF - Nuclear Fusion
Y1 - 1999
A1 - Weynants, R. R.
A1 - Messiaen, A. M.
A1 - Ongena, J.
A1 - Unterberg, B.
A1 - Bonheure, G.
A1 - Dumortier, P.
A1 - R. Jaspers
A1 - Koch, R.
A1 - Koslowski, H. R.
A1 - Kramer-Flecken, A.
A1 - Mank, G.
A1 - Rapp, J.
A1 - Tokar, M. Z.
A1 - van Wassenhove, G.
A1 - Biel, W.
A1 - Brix, M.
A1 - Durodie, F.
A1 - Esser, G.
A1 - Finken, K.H.
A1 - Fuchs, G.
A1 - Giesen, B.
A1 - Hobirk, J.
A1 - Huttemann, P.
A1 - Lehnen, M.
A1 - Lyssoivan, A.
A1 - Mertens, P.
A1 - Pospieszczyk, A.
A1 - Samm, U.
A1 - Sauer, M.
A1 - Schweer, B.
A1 - Uhlemann, R.
A1 - Van Oost, G.
A1 - Vandenplas, P. E.
A1 - Vervier, M.
A1 - Philipps, V.
A1 - Waidmann, G.
A1 - Wolf, G. H.
AB - The radiative improved (RI) mode is a tokamak regime offering many attractive reactor features. In the article, the RI mode of TEXTOR-94 is shown to follow the same scaling as the linear ohmic confinement regime and is thus identified as one of the most fundamental tokamak operational regimes. The current understanding derived from experiments and modelling of the conditions necessary for sustaining the mode is reviewed, as are the mechanisms leading to L-RI mode transition. The article discusses the compatibility of high impurity seeding with the low central power density of a burning reactor, as well as RI mode properties at and beyond the Greenwald density.
VL - 39
SN - 0029-5515
U5 - d8925aa0d22855a9d5ab471016f6b56a
ER -
TY - JOUR
T1 - Overview of experiments with radiation cooling at high confinement and high density in limited and diverted discharges
JF - Plasma Physics and Controlled Fusion
Y1 - 1999
A1 - Ongena, J.
A1 - Messiaen, A. M.
A1 - Unterberg, B.
A1 - Budny, R. V.
A1 - Bush, C. E.
A1 - Hill, K.
A1 - Hoang, G. T.
A1 - Jackson, G.
A1 - Kallenbach, A.
A1 - Monier-Garbet, P.
A1 - Mueller, D.
A1 - Murakami, M.
A1 - Staebler, G.
A1 - Ryter, F.
A1 - Wade, M.
A1 - Bell, M.
A1 - Boedo, J.
A1 - Bonheure, G.
A1 - Dumortier, P.
A1 - Durodie, F.
A1 - Finken, K.H.
A1 - Fuchs, G.
A1 - Giesen, B.
A1 - Hutteman, P.
A1 - R. Jaspers
A1 - Koch, R.
A1 - Kramer-Flecken, A.
A1 - Mertens, P.
A1 - Moyer, R.
A1 - Pospieszczyk, A.
A1 - Ramsey, A.
A1 - Samm, U.
A1 - Sauer, M.
A1 - Schweer, B.
A1 - Uhlemann, R.
A1 - Vandenplas, P. E.
A1 - Van Oost, G.
A1 - Vervier, M.
A1 - van Wassenhove, G.
A1 - Waidmann, G.
A1 - Weynants, R. R.
A1 - Wolf, G. H.
A1 - ASDEX Upgrade Team
A1 - DIII-D Team
A1 - TEXTOR team
A1 - Tftr Team
A1 - Tore Supra, Team
AB - An overview is presented of recent experiments with radiating mantles on limiter and divertor machines, realizing simultaneously high confinement and high density at high-radiation levels. A variety of operational regimes has been observed and the characteristics of each are documented. High-performance plasmas (i.e. edge localized mode (ELM)-free H-mode confinement quality f(H93) greater than or equal to 1 and normalized beta values beta(n) greater than or equal to 2 simultaneously) with radiating mantles have been demonstrated under quasistationary conditions during the maximum flattop time of the machine (equal to tens of confinement times) on DIII-D and TEXTOR-94. Maximum values for beta(n) up to 4 and for the advanced tokamak confinement-stability product beta(n) x f(L89) up to 13, have been obtained in very high confinement mode (VH-mode) like discharges with radiating mantles in DIII-D. There is a striking similarity between improved ohmic confinement discharges (with or without Ne seeding) and radiating mantle discharges, indicating a possible common origin for the confinement improvement observed. Possible scenarios for the application of radiating mantles on larger machines such as JET and JT-60U are indicated.
VL - 41
SN - 0741-3335
U5 - a4b81a1ae4f8558230486711dfd95b29
ER -
TY - JOUR
T1 - Runaway snakes in TEXTOR-94
JF - Plasma Physics and Controlled Fusion
Y1 - 1999
A1 - Entrop, I.
A1 - R. Jaspers
A1 - Cardozo, N. J. L.
A1 - Finken, K.H.
AB - Observations of a runaway beam confined in an island-like structure, a so-called runaway snake, are reported. The observations are made in TEXTOR-94 by measurement of synchrotron radiation emitted by these runaways. A full poloidal View allows for the study of the synchrotron pattern of the snake to estimate runaway energy, pitch angle and the radius, shift and safety factor of the drift surface q(D) at which the runaway beam has developed. The runaway snake parameters are investigated under different current and magnetic field strength conditions. Examples are found of a runaway snake at the q(D) = 1 and the q(D) = 2 drift surface. The radial diffusion coefficient of runaways inside a snake is D(r) approximate to 0.01 m(2) s(-1). The rapid runaway losses in regions of(macroscopic) magnetic perturbations outside a snake and the good confinement inside an island assumed to consist of perfect nested surfaces are consistent with magnetic turbulence as the main cause for runaway transport.
VL - 41
SN - 0741-3335
U5 - 4d1dc126759b2263ada1b2e0b0639129
ER -
TY - JOUR
T1 - Thermal pattern measurements during disruptions on TEXTOR-94
JF - Journal of Nuclear Materials
Y1 - 1999
A1 - Ciotti, M.
A1 - Denner, T.
A1 - Maruccia, G.
A1 - Finken, K.H.
A1 - Hobirk, J.
A1 - Kremer-Flecken, A.
A1 - Maddaluno, G.
A1 - Mank, G.
A1 - Pasqua, P.
A1 - Schüller, F. C.
A1 - Zanino, R.
AB - The thermal pattern onto the TEXTOR-94 toroidal limiter at the thermal quench for a set of four disruptions has been measured. A high temporal and spatial resolution camera, based on an infra-red 128 x 128 pixels focal plane array detector has been used to perform the measurements. Comparing the power profile for the same discharge as inferred from two images taken just before the disruption and at the thermal quench, it is possible to assess that: the radial exponential decay of the power flowing onto the limiter shows in both cases two different e-folding lengths, a short one (of the order of 2 mm or even less, in disruptive discharges) in the first few mm of the SOL depth and a larger one (1.5 cm) deeper in the SOL, An energy balance has been performed based on thermal images of both the limiter and the nearby wall during the thermal quench. The total energy lost is comparable to the plasma energy content. (C) 1999 Elsevier Science B.V. All rights reserved.
VL - 266
SN - 0022-3115
U5 - 8340409de559619fd921c8b8df714bc6
ER -
TY - JOUR
T1 - Control of runaway electron secondary generation by changing Z(eff)
JF - Nuclear Fusion
Y1 - 1998
A1 - Pankratov, I. M.
A1 - R. Jaspers
A1 - Finken, K.H.
A1 - Entrop, I.
A1 - Mank, G.
AB - The effect of Z(eff) on the runaway generation process by close collisions has been studied experimentally in the TEXTOR-94 tokamak in ohmic low density discharges. It is shown that the effective avalanching time increases with increasing Z(eff). This opens the possibility of controlling the runaway production in tokamaks by active impurity injection. Furthermore, the energy of the runaway electrons emitting the observed synchrotron radiation could be determined to be W-r approximate to 20 MeV. However, for ITER-like disruptions the runaway production will probably be reduced but not prevented by a Z(eff) increase.
VL - 38
SN - 0029-5515
U5 - 2d236872cbdf049198cd58ffa38a23e6
ER -
TY - JOUR
T1 - Diffusion of runaway electrons in TEXTOR-94
JF - Plasma Physics and Controlled Fusion
Y1 - 1998
A1 - Entrop, I.
A1 - Cardozo, N. J. L.
A1 - R. Jaspers
A1 - Finken, K.H.
AB - In the TEXTOR-94 tokamak, radial profiles of synchrotron radiation from relativistic runaway electrons have been measured. From these and measurements of the evolution of the radiation, a radial profile of the diffusion coefficient for the runaway electrons in the plasma core with W-r approximate to 25 MeV is derived. At half radius, D-r < 0.01 m(2) s(-1) is found. This result is compared with several other measurements of runaway diffusion coefficients derived mainly from runaway losses at the plasma edge.
VL - 40
SN - 0741-3335
U5 - 1365029f9d15e9b72ee0824b5f491ba1
ER -
TY - JOUR
T1 - High confinement and high density with stationary plasma energy and strong edge radiation cooling in the upgraded Torus experiment for technology oriented research (TEXTOR-94)
JF - Physics of Plasmas
Y1 - 1997
A1 - Messiaen, A. M.
A1 - Ongena, J.
A1 - Unterberg, B.
A1 - Boedo, J.
A1 - Fuchs, G.
A1 - R. Jaspers
A1 - Konen, L.
A1 - Koslowski, H. R.
A1 - Mank, G.
A1 - Rapp, J.
A1 - Samm, U.
A1 - Vandenplas, P. E.
A1 - Van Oost, G.
A1 - van Wassenhove, G.
A1 - Waidmann, G.
A1 - Weynants, R. R.
A1 - Wolf, G. H.
A1 - Bertschinger, G.
A1 - Bonheure, G.
A1 - Brix, M.
A1 - Dumortier, P.
A1 - Durodie, F.
A1 - Finken, K.H.
A1 - Giesen, B.
A1 - Hillis, D.
A1 - Hutteman, P.
A1 - Koch, R.
A1 - KramerFlecken, A.
A1 - Lyssoivan, A.
A1 - Mertens, P.
A1 - Pospieszczyk, A.
A1 - PostZwicker, A.
A1 - Sauer, M.
A1 - Schweer, B.
A1 - Schwelberger, J.
A1 - Telesca, G.
A1 - Tokar, M. Z.
A1 - Uhlemann, R.
A1 - Vervier, M.
A1 - Winter, J.
AB - An overview of the results obtained so far for the radiative I-mode regime on the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94) [Proceedings of die 16th IEEE Symposium on Fusion Engineering (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, p. 470] is given. This regime is obtained under quasistationary conditions with edge neon seeding in a pumped limiter tokamak with circular cross section. It combines high confinement and high beta (up to a normalized beta, beta(n) = 2) with low edge q values (down to q(a) = 2.8) and high density even above the Greenwald limit together with dominant edge radiative heat exhaust, and therefore shows promise for the future of fusion research. Bulk and edge properties of these discharges an described, and a detailed account is given of the energy and particle confinement and their scaling. Energy confinement scales linearly with density as for the nonsaturated Ohmic Neo-Alcator scaling, but the usual degradation with total power remains. No deleterious effects of the neon seeding on fusion reactivity and plasma stability have been observed. (C) 1997 American Institute of Physics.
VL - 4
SN - 1070-664X
U5 - 037ff68bcb3900c7ddfb694848a692ba
ER -
TY - JOUR
T1 - High confinement and high density with stationary plasma energy and strong edge radiation in the TEXTOR-94 tokamak
JF - Physical Review Letters
Y1 - 1996
A1 - Messiaen, A. M.
A1 - Ongena, J.
A1 - Samm, U.
A1 - Unterberg, B.
A1 - van Wassenhove, G.
A1 - Durodie, F.
A1 - R. Jaspers
A1 - Tokar, M. Z.
A1 - Vandenplas, P. E.
A1 - Van Oost, G.
A1 - Winter, J.
A1 - Wolf, G. H.
A1 - Bertschinger, G.
A1 - Bonheure, G.
A1 - Dumortier, P.
A1 - Euringer, H.
A1 - Finken, K.H.
A1 - Fuchs, G.
A1 - Giesen, B.
A1 - Koch, R.
A1 - Konen, L.
A1 - Konigs, C.
A1 - Koslowski, H. R.
A1 - KramerFlecken, A.
A1 - Lyssoivan, A.
A1 - Mank, G.
A1 - Rapp, J.
A1 - Schoon, N.
A1 - Telesca, G.
A1 - Uhlemann, R.
A1 - Vervier, M.
A1 - Waidmann, G.
A1 - Weynants, R. R.
AB - Stationary high energy confinement is observed on TEXTOR-94 for times limited only by the flux swing of the transformer using strong edge radiation cooling. Necessary tools are the feedback control of the radiated power and of the plasma energy content. At the highest densities obtained (up to 1.2 times the Greenwald limit), energy confinement exceeds the edge-localized-mode-free H-mode scaling ITERH93-P by more than 20%. beta limits of TEXTOR-94 are reached with f(H89)/q(a) approximate to 0.6 No detrimental effect of the seeded impurity is seen. These high confinement discharges meet many conditions necessary for a fusion reactor regime.
VL - 77
SN - 0031-9007
U5 - deb38c04f581d00fb67801bc857ea35e
ER -
TY - JOUR
T1 - Disruption generated runaway electrons in TEXTOR and ITER
JF - Nuclear Fusion
Y1 - 1996
A1 - R. Jaspers
A1 - Cardozo, N. J. L.
A1 - Schüller, F. C.
A1 - Finken, K.H.
A1 - Grewe, T.
A1 - Mank, G.
AB - Runaway generation during a major disruption has been observed in TEXTOR. Measurements of the synchrotron radiation yielded number, energy and pitch angle of the runaways. A simple model, which assumes that the runaways take over the current density in the centre of the discharge, successfully describes these measurements. This model is applied to JET and ITER. One interesting result of the model is that it could be favourable for ITER to have a high runaway production. This leads to a lower runaway energy and less runaway damage. Quantitative predications are sensitive to the value of the runaway parameter epsilon - E/E-crit, which is determined by the post-disruption temperature. The present estimate for ITER gives epsilon = 0.02, which results in a maximum runaway energy of 300 MeV in a runaway beam with a total energy of 500 MJ. However, if epsilon is enhanced, these values will be reduced. An increase to epsilon = 0.04 is sufficient to decrease the maximum runaway energy to 55 MeV and the total beam energy to 130 MJ. Secondary generation plays an important role in these predictions.
VL - 36
SN - 0029-5515
U5 - a753ccc083f5009df36c85653cf5396c
ER -
TY - JOUR
T1 - Recent Results on Ion-Cyclotron and Combined Heating of Textor
JF - Fusion Engineering and Design
Y1 - 1995
A1 - Koch, R.
A1 - Messiaen, A. M.
A1 - Ongena, J.
A1 - Vannieuwenhove, R.
A1 - Van Oost, G.
A1 - van Wassenhove, G.
A1 - Dumortier, P.
A1 - Durodie, F.
A1 - Vandenplas, P. E.
A1 - Vanesteer, D.
A1 - Vervier, M.
A1 - Weynants, R. R.
A1 - Finken, K.H.
A1 - Euringer, H.
A1 - Philipps, V.
A1 - Samm, U.
A1 - Unterberg, B.
A1 - Winter, J.
A1 - Bertschinger, G.
A1 - Esser, H. G.
A1 - Fuchs, G.
A1 - Giesen, B.
A1 - Hintz, E.
A1 - Hoenen, F.
A1 - Hutteman, P.
A1 - Konen, L.
A1 - Korten, M.
A1 - Koslowski, H. R.
A1 - KramerFlecken, A.
A1 - Lochter, M.
A1 - Mank, G.
A1 - Pospieszczyk, A.
A1 - Schweer, B.
A1 - Soltwisch, H.
A1 - Telesca, G.
A1 - Uhlemann, R.
A1 - Waidmann, G.
A1 - Wolf, G. H.
A1 - Boedo, J.
A1 - Gray, D.
A1 - Hillis, D. L.
A1 - Oyevaar, T.
A1 - Tammen, H. F.
A1 - Tanabe, T.
A1 - Ueda, Y.
AB - The recent experimental activity in the field of auxiliary heating and related topics on TEXTOR is reviewed. TEXTOR is equipped with up to 4 MW of ion cyclotron heating power and 3.4 MW of neutral beam injection. The combination of the radiating boundary concept with high auxiliary power has extended the improved confinement domain to the large density regime and demonstrated the viability of the radiating boundary concept for long pulse high power operation. Improved confinement was also achieved in third harmonic heating, characterised by predominant coupling of the RF to the beam ions. Operation of an unshielded antenna with insulated limiters proved that RF sheaths are taking place on the side limiters and are suppressed by insulation. Control of the helium flux by the RF was successfully demonstrated using the interaction of the RF with fast He-3 ions injected by neutral beam. Preliminary tests with a high Z limiter indicate compatibility, and even a positive effect, of the RF. Experience gained in operating unshielded antennas is also commented on.
VL - 26
SN - 0920-3796
U5 - 450239f862a46538964cd016ce30beba
ER -
TY - JOUR
T1 - Observations of Infrared Radiation During Disruptions in Textor - Heat Pulses and Runaway Electrons
JF - Journal of Nuclear Materials
Y1 - 1995
A1 - R. Jaspers
A1 - Grewe, T.
A1 - Finken, K.H.
A1 - KramerFlecken, A.
A1 - Cardozo, N. J. L.
A1 - Mank, G.
A1 - Waidmann, G.
AB - Disruptions are studied in TEXTOR using two infrared cameras. In the thermal quench phase, fast changing heat fluxes are observed, each delivering energies larger than 1 kJ/m(2) to the limiter. These bursts are correlated with an electron temperature pulse near the limiter and an increased release of impurities. Further bursts are observed in the current decay phase. For the first time a disruption generated beam of runaway electrons, accelerated in about 10 ms to about 20 MeV, is observed inside the plasma by the infrared synchrotron radiation. This beam carries a current of about 20 kA and is lost within approximately 100 mu s. The heat deposition on the limiter due to the runaways is comparable to the power flux by the heat bursts.
VL - 220
SN - 0022-3115
U5 - 19e49b734f7aa963ff95b1f3bc046785
ER -
TY - JOUR
T1 - Islands of Runaway Electrons in the Textor Tokamak and Relation to Transport in a Stochastic Field
JF - Physical Review Letters
Y1 - 1994
A1 - R. Jaspers
A1 - Cardozo, N. J. L.
A1 - Finken, K.H.
A1 - Schokker, B. C.
A1 - Mank, G.
A1 - Fuchs, G.
A1 - Schüller, F. C.
AB - A population of 30 MeV runaway electrons in the TEXTOR tokamak is diagnosed by their synchrotron emission. During pellet injection a large fraction of the population is lost within 600 mus. This rapid loss is attributed to stochastization of the magnetic field. The remaining runaways form a narrow, helical beam at the q = 1 drift surface. The radial and poloidal diffusion of this beam is extremely slow, D < 0.02 m2/s. The fact that the beam survives the period of stochastic field shows that in the chaotic sea big magnetic islands must remain intact.
VL - 72
SN - 0031-9007
U5 - 3ddda356ee4587def95179ee46ef1c2e
ER -
TY - JOUR
T1 - Resonant Coupling of Ion-Cyclotron Waves to Energetic Helium-Ions
JF - Physical Review Letters
Y1 - 1994
A1 - Finken, K.H.
A1 - Koch, R.
A1 - Euringer, H.
A1 - van Wassenhove, G.
A1 - Boedo, J. A.
A1 - Gray, D. S.
A1 - Hillis, D. L.
A1 - Huet, P.
A1 - Mank, G.
A1 - Van Eester, D.
A1 - Vannieuwenhove, R.
A1 - Van Oost, G.
A1 - Tammen, H. F.
AB - First measurements were performed to test a model prediction which states that the off-axis coupling of ion-cyclotron waves to energetic helium ions can generate either an inward or an outward drift of these particles. Ion-cyclotron waves with a power or up to 1 MW are coupled to energetic particles at the high field side, the low field side, or in the center by varying the toroidal magnetic field. When changing the heating power or the resonance location, the variation of the concentration of the energetic helium in the plasma agrees qualitatively with the model predictions.
VL - 73
SN - 0031-9007
U5 - 990db81310e8c9b8f029eca75ec2bb1e
ER -
TY - JOUR
T1 - Liquid Scintillation Detectors for Gamma and Neutron Diagnostic at Textor and Results of Runaway and Sawtooth Oscillations
JF - Review of Scientific Instruments
Y1 - 1994
A1 - Hoenen, F.
A1 - Graffmann, E.
A1 - Finken, K.H.
A1 - Barrenscheen, H. J.
A1 - Klein, H.
A1 - R. Jaspers
AB - Time and energy resolved neutron and gamma measurements are performed at the TEXTOR tokamak with a fast liquid NE-213 scintillator. To distinguish between neutron and gamma (gamma)-ray induced events, pulse shape discrimination is used. To suppress scattered radiation, the detector is installed in well-shielded collimators aligned radially or tangentially to the plasma current. Count rates up to 2-3 x 10(5) s(-1) can be processed without considerable reduction of n/gamma discrimination and without gain instability. To demonstrate the capability of this system, typical results are presented as obtained from plasmas in TEXTOR during sawtooth oscillations, runaway discharges, pellet injection, and neutral beam injection.
VL - 65
SN - 0034-6748
U5 - d3a6adf32d9e5ea9af1a25b2861afdb1
ER -
TY - JOUR
T1 - Experimental Investigation of Runaway Electron Generation in Textor
JF - Nuclear Fusion
Y1 - 1993
A1 - R. Jaspers
A1 - Finken, K.H.
A1 - Mank, G.
A1 - Hoenen, F.
A1 - Boedo, J. A.
A1 - Cardozo, N. J. L.
A1 - Schüller, F. C.
AB - An experimental study of the generation of runaway electrons in TEXTOR has been performed. From the infrared synchrotron radiation emitted by relativistic electrons, the number of runaway electrons can be obtained as a function of time. In low density discharges (n(e)BAR < 1 X 10(19) m-3) runaways are created throughout the discharge and not predominantly in the startup phase. From the exponential increase in the runaway population and the ongoing runaway production after the density is increased, it is concluded that the secondary generation, i.e. the creation of runaways through close collisions of already existing runaways with thermal electrons, provides an essential contribution to the runaway production. The effective avalanche time of this secondary process is determined to be t(eff) = 0.9 +/- 0.2 s.
VL - 33
SN - 0029-5515
U5 - bc4c3e0d2384928adc6f3b86d5388167
ER -