Accurate and computationally inexpensive transport models are vital for routine and robust predictions of tokamak turbulent transport. To this end, the QuaLiKiz [Bourdelle et al., Phys. Plasmas 14, 112501 (2007)] quasilinear gyrokinetic transport model has been recently developed. QuaLiKiz flux predictions have been validated by non-linear simulations over a wide range in parameter space. However, a discrepancy is found at low magnetic shear, where the quasilinear fluxes are significantly larger than the non-linear predictions. This discrepancy is found to stem from two distinct sources: the turbulence correlation length in the mixing length rule and an increase in the ratio between the quasilinear and non-linear transport weights, correlated with increased non-linear frequency broadening. Significantly closer agreement between the quasilinear and non-linear predictions is achieved through the development of an improved mixing length rule, whose assumptions are validated by non-linear simulations. (C) 2012 American Institute of Physics.

VL - 19 SN - 1070-664X N1 - ISI Document Delivery No.: 966JYTimes Cited: 0Cited Reference Count: 38 U1 -FP

U2 -CPP-HT

U5 - 79b0621193d64d70ed8b09d2bf00f7ca ER -