Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.

VL - 56 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2015/09/WPJET1PR1528.pdf IS - 3 U1 -FP

U2 -TP

U5 - d602ccdf3e42dd82b551d41759691058 ER - TY - JOUR T1 - Real-time control of ELM and sawtooth frequencies: similarities and differences JF - Nuclear Fusion Y1 - 2016 A1 - Lennholm, M. A1 - Frigione, D. A1 - Graves, J. P. A1 - Beaumont, P. S. A1 - Blackman, T. A1 - Carvalho, I. S. A1 - Chapman, I. A1 - Dumont, R. A1 - Felton, R. A1 - Tsalas, M. A1 - Garzotti, L. A1 - Goniche, M. A1 - Goodyear, A. A1 - Grist, D. A1 - Jachmich, S. A1 - Johnson, T. A1 - Lang, P. A1 - Lerche, E. A1 - de la Luna, E. A1 - Monakhov, I. A1 - Mooney, R. A1 - Morris, J. A1 - M F F Nave A1 - Reich, M. A1 - Rimini, F. A1 - Sips, G. A1 - H Sheikh A1 - Sozzi, C. A1 - JET Contributors AB -ELMs and Sawteeth, located in different parts of the plasma, are similar from a control engineering point of view. Both manifest themselves through quiescent periods interrupted by periodic collapses. For both, large collapses, following long quiescent periods, have detrimental effects while short periods are associated with decreased confinement. Following the installation of the all metal ‘ITER like wall’ on JET, sawteeth and ELMs also play an important role by expelling tungsten from the core and edge of the plasma respectively. Control of tungsten has therefore been added to divertor heat load reduction, NTM avoidance and helium ash removal as reasons for requiring ELM and sawtooth control. It is therefore of interest to implement control systems to maintain the sawtooth and ELM frequencies in the desired ranges. On JET, ELM frequency control uses radial field ‘kicks’ and pellet and gas injection as actuators, while sawtooth control uses ion cyclotron resonance heating (ICRH). JET experiments have, for the first time, established feedback control of the ELM frequency, via real time variation of the injected gas flow [1]. Using this controller in conjunction with pellet injection allows the ELM frequency to be kept as required despite variations in pellet ELM triggering efficiency. JET Sawtooth control experiments have, for the first time, demonstrated that low field side ICRH, as foreseen for ITER, can shorten sawteeth lengthened by central fast ions [2]. The development of ELM and sawtooth control could be key to achieve stable high performance JET discharges with minimal tungsten content. Integrating such schemes into an overall control strategy will be required in future tokamaks and gaining experience on current tokamaks is essential.

VL - 56 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2015/05/WPJET1PR1501.pdf IS - 1 U1 -FP

U2 -PDG

U5 - 49c8929abb0e88d6ddf1d8e1ddde5233 ER - TY - JOUR T1 - JET experiments with tritium and deuterium–tritium mixtures JF - Fusion Engineering and Design Y1 - 2016 A1 - Horton, L. A1 - Batistoni, P. A1 - Boyer, H. A1 - Challis, C. A1 - Ciric, D. A1 - Donne, A. J. H. A1 - Eriksson, L. G. A1 - J. Garcia A1 - Garzotti, L. A1 - Gee, S. A1 - Hobirk, J. A1 - Joffrin, E. A1 - Jones, T. A1 - King, D. B. A1 - Knipe, S. A1 - X. Litaudon A1 - Matthews, G. F. A1 - Monakhov, I. A1 - Murari, A. A1 - Nunes, I. A1 - Riccardo, V. A1 - Sips, A. C. C. A1 - Warren, R. A1 - Weisen, H. A1 - Zastrow, K. D. KW - deuterium KW - Fusion performance KW - JET KW - plasma-wall interactions KW - Tritium AB - Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at 14 MeV of JET neutron diagnostics. VL - 109–111, Part A IS - 11 N1 - Proceedings of the 12th International Symposium on Fusion Nuclear Technology-12 (ISFNT-12) U1 - FP U2 - TP U3 - FP120 U5 - 919ea07aae93a82b6fd7640a977cd6c7 ER - TY - JOUR T1 - Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall JF - Plasma Physics and Controlled Fusion Y1 - 2015 A1 - Graves, J. P. A1 - Lennholm, M. A1 - Chapman, I.T. A1 - Lerche, E. A1 - Reich, M. A1 - Alper, B. A1 - Bobkov, V. A1 - Dumont, R. A1 - Faustin, J. M. A1 - Jacquet, P. A1 - Jaulmes, F. A1 - Johnson, T. A1 - Keeling, D. L. A1 - Liu, Y. Q. A1 - Nicolas, T. A1 - Tholerus, S. A1 - Blackman, T. A1 - Carvalho, I. S. A1 - Coelho, R. A1 - Van Eester, D. A1 - Felton, R. A1 - Goniche, M. A1 - Kiptily, V. A1 - Monakhov, I. A1 - M F F Nave A1 - Perez von Thun, C. A1 - Sabot, R. A1 - Sozzi, C. A1 - Tsalas, M. AB - New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions. VL - 57 IS - 1 U1 - FP U2 - CPP-HT U5 - 350e787a0d57db2f73d24baa18668ef0 ER - TY - JOUR T1 - On the challenge of plasma heating with the JET metallic wall JF - Nuclear Fusion Y1 - 2014 A1 - Mayoral, M. L. A1 - Bobkov, V. A1 - Czarnecka, A. A1 - Day, I. A1 - Ekedahl, A. A1 - Jacquet, P. A1 - Goniche, M. A1 - King, R. A1 - Kirov, K. A1 - Lerche, E. A1 - J. Mailloux A1 - Van Eester, D. A1 - Asunta, O. A1 - Challis, C. A1 - Ciric, D. A1 - Coenen, J. W. A1 - Colas, L. A1 - Giroud, C. A1 - Graham, M. A1 - Jenkins, I. A1 - Joffrin, E. A1 - Jones, T. A1 - King, D. A1 - Kiptily, V. A1 - Klepper, C. C. A1 - Maggi, C. A1 - Maggiora, R. A1 - Marcotte, F. A1 - Matthews, G. A1 - Milanesio, D. A1 - Monakhov, I. A1 - Nightingale, M. A1 - Neu, R. A1 - Ongena, J. A1 - T. Puetterich A1 - Riccardo, V. A1 - Rimini, F. A1 - Strachan, J. A1 - Surrey, E. A1 - Thompson, V. A1 - van Rooij, G. J. AB - The major aspects linked to the use of the JET auxiliary heating systems: NBI, ICRF and LHCD, in the new JET ITER-like wall are presented. We show that although there were issues related to the operation of each system, efficient and safe plasma heating was obtained with room for higher power. For the NBI up to 25.7 MW was safely injected; issues that had to be tackled were mainly the beam shine-through and beam re-ionization before its entrance into the plasma. For the ICRF system, 5 MW were coupled in L-mode and 4 MW in H-mode; the main areas of concern were RF sheaths related heat loads and impurities production. For the LH, 2.5 MW were delivered without problems; arcing and generation of fast electron beams in front of the launcher that can lead to high heat loads were the keys issues. For each system, an overview will be given of: the main modifications implemented for safe use, their compatibility with the new metallic wall, the differences in behaviour compared with the previous carbon wall, with emphasis on heat loads and impurity content in the plasma. VL - 54 SN - 0029-5515; 1741-4326 UR - http://www.iop.org/Jet/article?EFDP13021&EFDP13030 IS - 3 U1 - PSI U2 - PSI-E U5 - e825dae3f38cd6ab213009ee6fd40383 ER - TY - JOUR T1 - ICRF specific plasma wall interactions in JET with the ITER-like wall JF - Journal of Nuclear Materials Y1 - 2013 A1 - Bobkov, V. I. A1 - Arnoux, G. A1 - Brezinsek, S. A1 - Coenen, J. W. A1 - Colas, L. A1 - Clever, M. A1 - Czarnecka, A. A1 - Braun, F. A1 - Dux, R. A1 - Huber, A. A1 - Jacquet, P. A1 - Klepper, C. A1 - Lerche, E. A1 - Maggi, C. A1 - Marcotte, F. A1 - Maslov, M. A1 - Matthews, G. A1 - Mayoral, M. L. A1 - McCormick, K. A1 - Meigs, A. A1 - Milanesio, D. A1 - Monakhov, I. A1 - Neu, R. A1 - Noterdaeme, J. M. A1 - Putterich, T. A1 - Rimini, F. A1 - van Rooij, G. J. A1 - Sergienko, G. A1 - Van Eester, D. AB - A variety of plasma wall interactions (PWIs) during operation of the so-called A2 ICRF antennas is observed in JET with the ITER-like wall. Amongst effects of the PWIs, the W content increase is the most significant, especially at low plasma densities. No increase of W source from the main divertor and entrance of the outer divertor during ICRF compared to NBI phases was found by means of spectroscopic and WI (400.9 nm) imaging diagnostics. In contrary, the W flux there is higher during NBI. Charge exchange neutrals of hydrogen isotopes could be excluded as considerable contributors to the W source. The high W content in ICRF heated limiter discharges suggests the possibility of other W sources than the divertor alone. Dependencies of PWIs to individual ICRF antennas during q95-scans, and intensification of those for the −90° phasing, indicate a link between the PWIs and the antenna near-fields. The PWIs include heat loads and Be sputtering pattern on antenna limiters. Indications of some PWIs at the outer divertor entrance are observed which do not result in higher W flux compared to the NBI phases, but are characterized by small antenna-specific (up to 25% with respect to ohmic phases) bipolar variations of WI emission. The first TOPICA calculations show a particularity of the A2 antennas compared to the ITER antenna, due to the presence of long antenna limiters in the RF image current loop and thus high near-fields across the most part of the JET outer wall. VL - 438, Supplement UR - http://www.sciencedirect.com/science/article/pii/S0022311513000524 N1 -Large and infrequent collapse events have been observed in high β N advanced tokamak (AT) plasmas in JET. Although they have features similar to large ELMs, they were triggered by core MHD. They caused a considerable loss of the plasma thermal and fast particle energy ( 10% of the total stored energy), but the heat load in the divertor due to these collapse events was small as a fraction of the plasma energy loss compared with regular type-I ELMs. Instead, significant heating of the main chamber wall was observed. A large, toroidally asymmetric, increase in the neutral gas pressure outside the plasma was observed after such events, which caused arcs in the lower hybrid (LH) and ion cyclotron (IC) heating systems and increased reionization in the neutral beam (NB) injectors. The collapses resulted in a reduction in the electron and ion temperatures and toroidal rotation of the whole plasma, a rise in Z eff ; and a sufficiently large increase in the peripheral electron density to completely black-out the ECE emission from the plasma core. These features have been modelled to gain an understanding of the plasma behaviour associated with these collapse events and the implication for the operation of AT plasma scenarios with high additional heating power will be discussed.

VL - 52 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2014/11/EFDP10055.pdf IS - 2 U1 -FP

U2 -PDG

U5 - c376153b3a1ad9595ea8043c3eb4bc86 ER - TY - JOUR T1 - Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET JF - Plasma Physics and Controlled Fusion Y1 - 2012 A1 - Lerche, E. A1 - Van Eester, D. A1 - Johnson, T. J. A1 - Hellsten, T. A1 - Ongena, J. A1 - Mayoral, M. L. A1 - Frigione, D. A1 - Sozzi, C. A1 - Calabro, G. A1 - Lennholm, M. A1 - Beaumont, P. A1 - Blackman, T. A1 - Brennan, D. A1 - Brett, A. A1 - Cecconello, M. A1 - Coffey, I. A1 - Coyne, A. A1 - Crombe, K. A1 - Czarnecka, A. A1 - Felton, R. A1 - Giroud, C. A1 - Gorini, G. A1 - Hellesen, C. A1 - Jacquet, P. A1 - Kiptily, V. A1 - Knipe, S. A1 - Krasilnikov, A. A1 - Maslov, M. A1 - Monakhov, I. A1 - Noble, C. A1 - Nocente, M. A1 - Pangioni, L. A1 - Proverbio, I. A1 - Sergienko, G. A1 - Stamp, M. A1 - Studholme, W. A1 - Tardocchi, M. A1 - Vdovin, V. A1 - Versloot, T. A1 - Voitsekhovitch, I. A1 - Whitehurst, A. A1 - Wooldridge, E. A1 - Zoita, V. A1 - JET-EFDA Contributors AB - Two ion cyclotron range of frequencies (ICRF) heating schemes proposed for the half-field operation phase of ITER in hydrogen plasmas—fundamental H majority and second harmonic 3 He ICRF heating—were recently investigated in JET. Although the same magnetic field and RF frequencies ( f ≈ 42 MHz and f ≈ 52 MHz, respectively) were used, the density and particularly the plasma temperature were lower than those expected in the initial phase of ITER. Unlike for the well-performing H minority heating scheme to be used in 4 He plasmas, modest heating efficiencies ( η = P absorbed / P launched < 40%) with dominant electron heating were found in both H plasma scenarios studied, and enhanced plasma–wall interaction manifested by high radiation losses and relatively large impurity content in the plasma was observed. This effect was stronger in the 3 He ICRF heating case than in the H majority heating experiments and it was verified that concentrations as high as ∼20% are necessary to observe significant ion heating in this case. The RF acceleration of the heated ions was modest in both cases, although a small fraction of the 3 He ions reached about 260 keV in the second harmonic 3 He heating experiments when 5 MW of ICRF power was applied. Considerable RF acceleration of deuterium beam ions was also observed in some discharges of the 3 He heating experiments (where both the second and third harmonic ion cyclotron resonance layers of the D ions are inside the plasma) whilst it was practically absent in the majority hydrogen heating scenario. While hints of improved RF heating efficiency as a function of the plasma temperature and plasma dilution (with 4 He) were confirmed in the H majority case, the 3 He concentration was the main handle on the heating efficiency in the second harmonic 3 He heating scenario. VL - 54 UR - http://stacks.iop.org/0741-3335/54/i=7/a=074008 U1 - FP U2 - PDG U5 - c7586e86396bb14ec0592fd5272dde01 ER - TY - JOUR T1 - Physics and engineering results obtained with the ion cyclotron range of frequencies ITER-like antenna on JET JF - Plasma Physics and Controlled Fusion Y1 - 2012 A1 - F Durodié A1 - Nightingale, M. P. S. A1 - Mayoral, M. L. A1 - Ongena, J. A1 - Argouarch, A. A1 - G BergerBy A1 - Blackman, T. A1 - Cocilovo, V. A1 - Czarnecka, A. A1 - S Dowson A1 - Frigione, D. A1 - Goulding, R. A1 - Graham, M. A1 - Hobirk, J. A1 - Huygen, S. A1 - Jachmich, S. A1 - Jacquet, P. A1 - Lerche, E. A1 - Lamalle, P. U. A1 - Loarer, T. A1 - Maggiora, R. A1 - Messiaen, A. A1 - Milanesio, D. A1 - Monakhov, I. A1 - M F F Nave A1 - Rimini, F. A1 - H Sheikh A1 - Sozzi, C. A1 - Tsalas, M. A1 - Van Eester, D. A1 - Vrancken, M. A1 - Whitehurst, A. A1 - Wooldridge, E. A1 - Zastrow, K. D. AB - This paper summarizes the operational experience of the ion cyclotron resonant frequency (ICRF) ITER-like antenna on JET aiming at substantially increasing the power density in the range of the requirements for ITER combined with load resiliency. An in-depth description of its commissioning, operational aspects and achieved performances is presented. VL - 54 UR - http://stacks.iop.org/0741-3335/54/i=7/a=074012 U1 - FP U2 - PDG U5 - e9523681f1f7fdd5217ac9444f312e77 ER - TY - JOUR T1 - Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET JF - Nuclear Fusion Y1 - 2011 A1 - Versloot, T. W. A1 - Sartori, R. A1 - Rimini, F. A1 - de Vries, P. C. A1 - Saibene, G. A1 - Parail, V. A1 - Beurskens, M. N. A. A1 - Boboc, A. A1 - Budny, R. A1 - Crombe, K. A1 - de la Luna, E. A1 - Durodie, F. A1 - Eich, T. A1 - Giroud, C. A1 - Kiptily, V. A1 - Johnson, T. A1 - Mantica, P. A1 - Mayoral, M. L. A1 - McDonald, D. C. A1 - Monakhov, I. A1 - M F F Nave A1 - Voitsekhovitch, I. A1 - Zastrow, K. D. KW - ASDEX UPGRADE KW - CONFINEMENT KW - EDGE TRANSPORT KW - HIGH-DENSITY KW - ITER KW - PEDESTAL KW - PERFORMANCE AB - The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The motivation for the experiment was to verify if the basic confinement and transport properties of the baseline ITER H-mode are robust to these changes, and similar to those derived mostly from dominant NB heated H-modes. No significant difference in the density and temperature profiles or in the global confinement were found. Although ion temperature profiles were seen to be globally stiff, some variation of stiffness was obtained in the experiment by varying the deposition profiles, but not one that could significantly affect the profiles in terms of global confinement. This analysis shows the thermal plasma energy confinement enhancement factor to be independent of the heating mix, for the range of conditions explored. Moreover, the response of the global confinement to changes in density and power were also independent of heating mix, reflecting the changes in the pedestal, which is in agreement with globally stiff profiles. Consistently, the pedestal characteristics (pressure and width) and their dependences on global parameters such as density and power were the same during NB only or with predominant IC heating. VL - 51 SN - 0029-5515 IS - 10 U1 - FP U2 - PDG U5 - fdc2a75f4d6de51443b4e06a0245671e ER - TY - JOUR T1 - Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments JF - Plasma Physics and Controlled Fusion Y1 - 2011 A1 - Lerche, E. A1 - Van Eester, D. A1 - Ongena, J. A1 - Mayoral, M. L. A1 - Laxaback, M. A1 - Rimini, F. A1 - Argouarch, A. A1 - Beaumont, P. A1 - Blackman, T. A1 - Bobkov, V. A1 - Brennan, D. A1 - Brett, A. A1 - Calabro, G. A1 - Cecconello, M. A1 - Coffey, I. A1 - Colas, L. A1 - Coyne, A. A1 - Crombe, K. A1 - Czarnecka, A. A1 - Dumont, R. A1 - Durodie, F. A1 - Felton, R. A1 - Frigione, D. A1 - Johnson, M. G. A1 - Giroud, C. A1 - Gorini, G. A1 - Graham, M. A1 - Hellesen, C. A1 - Hellsten, T. A1 - Huygen, S. A1 - Jacquet, P. A1 - Johnson, T. A1 - Kiptily, V. A1 - Knipe, S. A1 - Krasilnikov, A. A1 - Lamalle, P. A1 - Lennholm, M. A1 - Loarte, A. A1 - Maggiora, R. A1 - Maslov, M. A1 - Messiaen, A. A1 - Milanesio, D. A1 - Monakhov, I. A1 - Nightingale, M. A1 - Noble, C. A1 - Nocente, M. A1 - Pangioni, L. A1 - Proverbio, I. A1 - Sozzi, C. A1 - Stamp, M. A1 - Studholme, W. A1 - Tardocchi, M. A1 - Versloot, T. W. A1 - Vdovin, V. A1 - Vrancken, M. A1 - Whitehurst, A. A1 - Wooldridge, E. A1 - Zoita, V. KW - DESIGN KW - ICRF ANTENNAS KW - MODE CONVERSION KW - PLASMAS KW - Sawtooth KW - SCENARIOS KW - SYSTEM KW - TOKAMAK AB -In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

VL - 53 SN - 0741-3335 IS - 12 N1 - ISI Document Delivery No.: 870BLTimes Cited: 0Cited Reference Count: 43Part 1-2 U1 -FP

U2 -PDG

U5 - 5271f643f9b6df31138d568a0bcdbc8b ER - TY - JOUR T1 - Recent results on Ion Cyclotron Wall Conditioning in mid and large size tokamaks JF - Journal of Nuclear Materials Y1 - 2011 A1 - Douai, D. A1 - Lyssoivan, A. A1 - Philipps, V. A1 - Rohde, V. A1 - Wauters, T. A1 - Blackman, T. A1 - Bobkov, V. A1 - Bremond, S. A1 - Brezinsek, S. A1 - Clairet, F. A1 - De La Cal, E. A1 - Coyne, T. A1 - Gauthier, E. A1 - Gerbaud, T. A1 - Graham, M. A1 - Jachmich, S. A1 - Joffrin, E. A1 - Koch, R. A1 - Kreter, A. A1 - Laengner, R. A1 - Lamalle, P. U. A1 - Lerche, E. A1 - Lombard, G. A1 - Maslov, M. A1 - Mayoral, M. L. A1 - Miller, A. A1 - Monakhov, I. A1 - Noterdaeme, J. M. A1 - Ongena, J. A1 - Paul, M. K. A1 - Pegourie, B. A1 - Pitts, R.A. A1 - Plyusnin, V. A1 - Schüller, F. C. A1 - Sergienko, G. A1 - Shimada, M. A1 - Sirinelli, A. A1 - Suttrop, W. A1 - Sozzi, C. A1 - Tsalas, M. A1 - Tsitrone, E. A1 - Unterberg, B. A1 - Van Eester, D. KW - beryllium KW - CLEANINGS KW - DISCHARGES KW - PERMANENT MAGNETIC-FIELD KW - TORE-SUPRA AB -Wall conditioning techniques applicable in the presence of permanent toroidal magnetic field will be required for the operation of ITER, in particular for recovery from disruptions, vent and air leak, isotopic ratio control, recycling control and mitigation of the tritium inventory build-up. Ion Cyclotron Wall Conditioning (ICWC) is one of the most promising options and has been the subject of considerable recent study on current tokamaks. This paper reports on the findings of such studies performed on European tokamaks, covering a range of plasma-facing materials: TORE SUPRA, TEXTOR, ASDEX Upgrade and JET. (C) 2010 Elsevier B.V. All rights reserved.

VL - 415 SN - 0022-3115 IS - 1, Suppl. N1 - ISI Document Delivery No.: 862XTTimes Cited: 5Cited Reference Count: 1819th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices (PSI)MAY 24-28, 2010San Diego, CALawrence Livermore Natl LabS U1 -FP

U2 -PDG

U5 - 8cf46194dfe54d360b4630dacdd87add ER - TY - JOUR T1 - TORE SUPRA Team Mmembers 1988-2008 JF - Fusion Science and Technology Y1 - 2009 A1 - Abgrall, R. A1 - Achard, M. H. A1 - Adam, J. A1 - Agarici, G. A1 - Agostini, E. A1 - Airaj, M. A1 - Albajar-Vinas, F. A1 - Allegretti, L. A1 - Allibert, J. P. A1 - Alliez, J. C. A1 - Allouche, A. A1 - Andreoletti, J. A1 - Ane, J. M. A1 - Angelino, P. A1 - Aniel, T. A1 - Antar, G. A1 - Arcis, N. A1 - Argouarch, A. A1 - Arnas, C. A1 - Arnoux, G. A1 - Arslanbekov, R. A1 - Artaud, J. F. A1 - Asp, E. A1 - Assas, S. A1 - Atttuel, G. A1 - Aymar, R. A1 - Azeroual, A. A1 - Balme, S. A1 - Barana, O. A1 - Bareyt, B. A1 - Basiuk, V. A1 - Basko, M. A1 - Bayetti, P. A1 - Baylor, L. A1 - Beaumont, B. A1 - Becherer, R. A1 - Becoulet, A. A1 - Becoulet, M. A1 - Begrambekov, L. A1 - Benkadda, S. A1 - Benoit, F. A1 - Bergeaud, V. A1 - Berger-By, G. A1 - Berio, S. A1 - Bernascolle, P. A1 - Bernier, N. A1 - Berroukeche, M. A1 - Bertrand, B. A1 - Bessette, D. A1 - Beyer, P. A1 - Bibet, P. A1 - Bizzaro, J. A1 - Blanchard, P. A1 - Blum, J. A1 - Boddeker, S. A1 - Boilson, D. A1 - Mardion, G. B. A1 - Bonnel, P. A1 - Bonnin, X. A1 - Boscary, J. A1 - Bosia, G. A1 - Bottereau, J. M. A1 - Bottiglioni, F. A1 - Bottollier-Curtet, H. A1 - Bouchand, C. A1 - Bouligand, G. A1 - Bouquey, F. A1 - Bourdelle, C. A1 - Bregeon, R. A1 - Bremond, F. A1 - Bremond, S. A1 - Breton, C. A1 - Breton, M. A1 - Brosset, C. A1 - Brugnetti, R. A1 - Bruneau, J. L. A1 - Bucalossi, J. A1 - Budny, R. V. A1 - Buravand, Y. A1 - Bush, C. A1 - Bussac, M. N. A1 - Cambe, A. A1 - Capes, H. A1 - Capitain, J. J. A1 - Cara, P. A1 - Carbonnier, J. L. A1 - Carpentier, S. A1 - Carrasco, J. A1 - Casati, A. A1 - Chaibi, O. A1 - Chamouard, C. A1 - Chantant, M. A1 - Chappuis, P. A1 - Chatain, D. A1 - Chatelier, E. A1 - Chatelier, M. A1 - Chatenet, J. H. A1 - Chen, X. P. A1 - Cherigier, L. A1 - Chevet, G. A1 - Chiarazzo, L. A1 - Ciazynski, D. A1 - Ciraolo, G. A1 - Cismondi, F. A1 - Clairet, F. A1 - Clary, J. A1 - Clement, C. A1 - Colas, L. A1 - Commaux, N. A1 - Corbel, E. A1 - Cordier, J. J. A1 - Corre, Y. A1 - Costanzo, L. A1 - Cote, A. A1 - Coulon, J. P. A1 - Courtois, L. A1 - Courtois, X. A1 - Couturier, B. A1 - Crenn, J. P. A1 - Cristofani, P. A1 - Crouseilles, N. A1 - Czarny, O. A1 - Rosa, P. D. A1 - Darbos, C. A1 - Darmet, G. A1 - Davi, M. A1 - Daviot, R. A1 - De Esch, H. A1 - De Gentile, B. A1 - De Haas, J. C. A1 - De La Cal, E. A1 - De Michelis, C. A1 - Deck, C. A1 - Decker, J. A1 - Decool, P. A1 - Degond, P. A1 - Dejarnac, R. A1 - Delchambre, E. A1 - Delmas, E. A1 - Delpech, L. A1 - Demarthe, H. A1 - Dentan, M. A1 - Depret, G. A1 - Deschamps, P. A1 - Desgranges, C. A1 - Devynck, P. A1 - Doceul, L. A1 - Dolgetta, N. A1 - Doloc, C. A1 - Dong, Y. A1 - Dore, P. A1 - Douai, D. A1 - Dougnac, H. A1 - Drawin, H. W. A1 - Druaux, J. A1 - Druetta, M. A1 - Dubois, F. A1 - Dubois, M. A1 - Dubuit, N. A1 - Duchateau, J. L. A1 - de Wit, T. D. A1 - Dufour, E. A1 - Dumont, R. A1 - Dunand, G. A1 - Dupas, L. A1 - Duran, Y. A1 - Durocher, A. A1 - Edery, D. A1 - Ekedahl, A. A1 - Elbeze, D. A1 - Eriksson, L. G. A1 - Escande, D. A1 - Escarguel, A. A1 - Escourbiac, F. A1 - Evans, T. A1 - Faisse, F. A1 - Falchetto, G. A1 - Fall, T. A1 - Farge, M. A1 - Farjon, J. L. A1 - Faudot, E. A1 - Fazilleau, P. A1 - Fedorczak, N. A1 - Fenzi-Bonizec, C. A1 - Ferron, J. R. A1 - Fidone, I. A1 - Figarella, C. A1 - Fleurence, E. A1 - Fleury, I. A1 - Fois, M. A1 - Forrest, C. A1 - Foster, C. A. A1 - Fouquet, S. A1 - Fourment, C. A1 - Fraboulet, D. A1 - Francois, P. A1 - Franel, B. A1 - Frigione, D. A1 - Froissard, P. A1 - Fubiani, G. A1 - Fuchs, V. A1 - Fumelli, M. A1 - Gagey, B. A1 - Galindo, V. A1 - Gambier, D. A1 - Garampon, L. A1 - Garbet, X. A1 - Garbil, R. A1 - J. Garcia A1 - Gardarein, J. L. A1 - Gargiulo, L. A1 - Garibaldi, P. A1 - Garin, P. A1 - Gauthier, E. A1 - Geraud, A. A1 - Gerbaud, T. A1 - Gervais, F. A1 - Geynet, M. A1 - Ghendrih, P. A1 - Gianakon, T. A1 - Giannella, R. A1 - Gil, C. A1 - Girard, J. P. A1 - Giruzzi, G. A1 - Godbert-Mouret, L. A1 - Gomez, P. A1 - Goniche, M. A1 - Gordeev, A. A1 - Granata, G. A1 - Grandgirard, V. A1 - Gravier, R. A1 - Gravil, B. A1 - Gregoire, M. A1 - Gregoire, S. A1 - Grelot, P. A1 - Gresillon, D. A1 - Grisolia, C. A1 - Gros, G. A1 - Grosman, A. A1 - Grua, P. A1 - Guerin, O. A1 - Guigon, R. A1 - Guilhem, D. A1 - Guillerminet, B. A1 - Guirlet, R. A1 - Guiziou, L. A1 - Gunn, J. A1 - Hacquin, S. A1 - Harris, J. A1 - Haste, G. A1 - Hatchressian, J. C. A1 - Hemsworth, R. A1 - Hennequin, P. A1 - Hennion, F. A1 - Hennion, V. A1 - Henry, D. A1 - Hernandez, C. A1 - Hertout, P. A1 - Hess, W. A1 - Hesse, M. A1 - Heuraux, S. A1 - Hillairet, J. A1 - Hoang, G. T. A1 - Hogan, J. A1 - Hong, S. H. A1 - Honore, C. A1 - Horton, L. A1 - Horton, W. W. A1 - Houlberg, W. A. A1 - Hourtoule, J. A1 - Houry, M. A1 - Houy, P. A1 - How, J. A1 - Hron, M. A1 - Hutter, T. A1 - Huynh, P. A1 - Huysmans, G. A1 - Idmtal, J. A1 - Imbeaux, F. A1 - Isler, R. A1 - Jaben, C. A1 - Jacquinot, J. A1 - Jacquot, C. A1 - Jager, B. A1 - Jaunet, M. A1 - Javon, C. A1 - Jelea, A. A1 - Jequier, F. A1 - Jie, Y. X. A1 - Jimenez, R. A1 - Joffrin, E. A1 - Johner, J. A1 - Jourd'heuil, L. A1 - Journeaux, J. Y. A1 - Joyer, P. A1 - Ju, M. A1 - Jullien, F. A1 - Junique, F. A1 - Kaye, S. M. A1 - Kazarian, F. A1 - Khodja, H. A1 - Klepper, C. A1 - Kocan, M. A1 - Koski, J. A1 - Krivenski, V. A1 - Krylov, A. A1 - Kupfer, K. A1 - Kuus, H. A1 - Labit, B. A1 - Laborde, L. A1 - Lacroix, B. A1 - Ladurelle, L. A1 - Lafon, D. A1 - Lamaison, V. A1 - Laporte, P. A1 - Lasalle, J. A1 - Latu, G. A1 - Laugier, F. A1 - Laurent, L. A1 - Lausenaz, Y. A1 - Laviron, C. A1 - Layet, J. M. A1 - Le Bris, A. A1 - Le Coz, F. A1 - Le Niliot, C. A1 - Le Bris, A. A1 - Leclert, G. A1 - Lecoustey, P. A1 - Ledyankinc, A. A1 - Leloup, C. A1 - Lennholm, M. A1 - Leroux, F. A1 - Li, Y. Y. A1 - Libeyre, P. A1 - Linez, F. A1 - Lipa, M. A1 - Lippmann, S. A1 - X. Litaudon A1 - Liu, W. D. A1 - Loarer, T. A1 - Lott, F. A1 - Lotte, P. A1 - Lowry, C. A1 - Luciani, J. F. A1 - Lutjens, H. A1 - Luty, J. A1 - Lutz, T. A1 - Lyraud, C. A1 - Maas, A. A1 - Macor, A. A1 - Madeleine, S. A1 - Magaud, P. A1 - Maget, P. A1 - Magne, R. A1 - Mahdavi, A. A1 - Mahe, F. A1 - J. Mailloux A1 - Mandl, W. A1 - Manenc, L. A1 - Marandet, Y. A1 - Marbach, G. A1 - Marechal, J. L. A1 - Martin, C. A1 - Martin, G. A1 - Martin, V. A1 - Martinez, A. A1 - Martins, J. P. A1 - Maschke, E. A1 - Masse, L. A1 - Masset, R. A1 - Massmann, P. A1 - Mattioli, M. A1 - Mayaux, G. A1 - Mayoral, M. L. A1 - Mazon, D. A1 - McGrath, R. A1 - Mercier, C. A1 - Meslin, B. A1 - Meunier, L. A1 - Meyer, O. A1 - Michelot, Y. A1 - Million, L. A1 - Millot, P. A1 - Minguella, G. A1 - Minot, F. A1 - Mioduszewski, P. A1 - Misguich, J. H. A1 - Miskane, F. A1 - Missirlian, M. A1 - Mitteau, R. A1 - Moerel, F. A1 - Mollard, P. A1 - Monakhov, I. A1 - Moncada, V. A1 - Moncel, L. A1 - Monier-Garbet, P. A1 - Moreau, D. A1 - Moreau, F. A1 - Moreau, P. A1 - Morera, J. P. A1 - Moret, J. M. A1 - Moulin, B. A1 - Moulin, D. A1 - Mourgues, F. A1 - Moustier, M. A1 - Nakach, R. A1 - Nannini, M. A1 - Nanobashvili, I. A1 - Nardon, E. A1 - Navarra, P. A1 - Nehme, H. A1 - Nguyen, C. A1 - Nguyen, F. A1 - Nicollet, S. A1 - Nygren, R. A1 - Ogorodnikova, O. A1 - Olivain, J. A1 - Orlandelli, P. A1 - Ottaviani, M. A1 - Ouvrier-Buffet, P. A1 - Ouyang, Z. A1 - Owen, L. A1 - Pacella, D. A1 - Pain, M. A1 - Pamela, J. A1 - Pamela, S. A1 - Panek, R. A1 - Panzarella, A. A1 - Paris, R. A1 - Parisot, T. A1 - Park, S. H. A1 - Parlange, F. A1 - Parrat, H. A1 - Pastor, G. A1 - Pastor, P. A1 - Pastor, T. A1 - Patris, R. A1 - Paume, M. A1 - Payan, J. A1 - Pecquet, A. L. A1 - Pegourie, B. A1 - Petrov, Y. A1 - Petrzilka, V. A1 - Peysson, Y. A1 - Piat, D. A1 - Picchiottino, J. M. A1 - Pierre, J. A1 - Platz, P. A1 - Portafaix, C. A1 - Prou, M. A1 - Pugno, R. A1 - Putchy, L. A1 - Qin, C. M. A1 - Quallis, L. A1 - Quemeneur, A. A1 - Quet, P. A1 - Rabaglino, E. A1 - Raharijaona, J. J. A1 - Ramette, J. A1 - Ravenel, N. A1 - Rax, J. M. A1 - Reichle, R. A1 - Renard, B. A1 - Renner, H. A1 - Reuss, J. D. A1 - Reux, C. A1 - Reverdin, C. A1 - Rey, G. A1 - Reynaud, P. A1 - Riband, P. H. A1 - Richou, M. A1 - Rigollet, F. A1 - Rimini, F. A1 - Riquet, D. A1 - Rochard, F. A1 - Rodriguez, L. A1 - Romanelli, M. A1 - Romannikov, A. A1 - Rosanvallon, S. A1 - Roth, J. A1 - Rothan, B. A1 - Roubin, J. P. A1 - Roubin, P. A1 - Roupillard, G. A1 - Roussel, P. A1 - Ruggieri, R. A1 - Sabathier, F. A1 - Sabbagh, S. A. A1 - Sabot, R. A1 - Saha, S. K. A1 - Saint-Laurent, F. A1 - Salasca, S. A1 - Salmon, T. A1 - Salvador, J. A1 - Samaille, F. A1 - Samain, A. A1 - Santagiustina, A. A1 - Saoutic, B. A1 - Sarazin, Y. A1 - Schild, T. A1 - Schlosser, J. A1 - Schneider, M. A1 - Schneider, K. A1 - Schunke, B. A1 - Schwander, F. A1 - Schwob, J. L. A1 - Sebelin, E. A1 - Segui, J. L. A1 - Seigneur, A. A1 - Shepard, T. A1 - Shigin, P. A1 - Signoret, J. A1 - Simoncini, J. A1 - Simonet, F. A1 - Simonin, A. A1 - Sirinelli, A. A1 - Sledziewski, Z. A1 - Smits, F. A1 - Soler, K. A1 - Sonato, P. G. A1 - Song, S. D. A1 - Sonnendrucker, E. A1 - Sourd, F. A1 - Spitz, P. A1 - Spuig, P. A1 - Stamm, R. A1 - Stephan, Y. A1 - Stirling, W. A1 - Stockel, J. A1 - Stott, P. A1 - Sthal, K. S. A1 - Surle, F. A1 - Svensson, L. A1 - Tachon, J. A1 - Talvard, M. A1 - Tamain, P. A1 - Tavian, L. A1 - Tena, M. A1 - Theis, J. M. A1 - Thomas, C. E. A1 - Thomas, P. A1 - Thonnat, M. A1 - Tobin, S. A1 - Tokar, M. A1 - Tonon, G. A1 - Torossian, A. A1 - Torre, A. A1 - Trainham, R. C. A1 - Travere, J. M. A1 - Tresset, G. A1 - Trier, E. A1 - Truc, A. A1 - Tsitrone, E. A1 - Turck, B. A1 - Turco, F. A1 - Turlur, S. A1 - Uckan, T. A1 - Udintsev, V. A1 - Urguijo, G. A1 - Utzel, N. A1 - Vallet, J. C. A1 - Valter, J. A1 - Van Houtte, D. A1 - Van Rompuy, T. A1 - Vatry, A. A1 - Verga, A. A1 - Vermare, L. A1 - Vezard, D. A1 - Viallet, H. A1 - Villecroze, F. A1 - Villedieu, E. A1 - Villegas, D. A1 - Vincent, E. A1 - Voitsekovitch, I. A1 - von Hellermann, M. A1 - Voslamber, D. A1 - Voyer, D. A1 - Vulliez, K. A1 - Wachter, C. A1 - Wagner, T. A1 - Waller, V. A1 - Wang, G. A1 - Wang, Z. A1 - Watkins, J. A1 - Weisse, J. A1 - White, R. A1 - Wijnands, T. A1 - Witrant, E. A1 - Worms, J. A1 - Xiao, W. A1 - Yu, D. A1 - Zabeo, L. A1 - Zabiego, M. A1 - Zani, L. A1 - Zhuang, G. A1 - Zou, X. L. A1 - Zucchi, E. A1 - Zunino, K. A1 - Zwingmann, W. VL - 56 SN - 1536-1055 UR -