TY - JOUR
T1 - Geometry and expected performance of the solid tungsten outer divertor row in JET
JF - Fusion Engineering and Design
Y1 - 2010
A1 - Rapp, J.
A1 - Pintsuk, G.
A1 - Mertens, P.
A1 - Altmann, H.
A1 - Lomas, P. J.
A1 - Riccardo, V.
KW - DESIGN
KW - Divertor tiles
KW - JET
KW - Plasma-facing components
KW - Tile shadowing
AB - At JET new plasma-facing components for the main chamber wall and the divertor are being designed and built to mimic the expected ITER plasma wall conditions in the deuterium-tritium operation phase. The main wall elements at JET will be made of beryllium and the divertor plasma-facing surface will be made of tungsten. Most of the divertor tiles will consist of tungsten-coated Carbon Fibre Composite (CFC) material. However one toroidal row in the outer divertor will be made of solid, inertially cooled tungsten. The geometry of these solid tungsten divertor components is optimized within the boundary conditions of the interfaces and the constraints given by the electrodynamical forces. Shadowing calculations as well as rough field line penetration analysis is used to define the geometry of the tungsten lamella stacks. These calculations are based on a set of magnetic equilibria reflecting the operation domain of current JET plasma scenarios. All edges in poloidal and toroidal direction are shadowed to exclude near perpendicular field line impact. In addition, the geometry of the divertor structure is being optimized so that the fraction of the plasma wetted surface is maximised. On the basis of the optimized divertor geometry, performance calculations are done with the help of ANSYS to assess the maximum power exhaust possible with this inertially cooled divertor row. (C) 2009 ETDA-Jet. Published by Elsevier B.V. All rights reserved.
VL - 85
SN - 0920-3796
UR - ://000277644100001
N1 - ISI Document Delivery No.: 595WKTimes Cited: 0Cited Reference Count: 9
U1 - Fusion Physics
U5 - 26f1c127d31852e29894417bfceb6a08
ER -
TY - Generic
T1 - A bulk tungsten divertor row for the outer strike point in JET
Y1 - 2009
A1 - Mertens, P.
A1 - Altmann, H.
A1 - Hirai, T.
A1 - Kanup, M.
A1 - Neubauer, O.
A1 - Philipps, V.
A1 - Rapp, J.
A1 - Riccardo, V.
A1 - Sadakov, S.
A1 - Terra, A.
A1 - Uytdenhouwen, I.
A1 - Samm, U.
A1 - Schweer, B.
KW - divertor
KW - ITER-like Wall
KW - JET
KW - Lamellae
KW - Tungsten
AB - In the frame of the ITER-like wall project, a new row of divertor tiles has been developed which consists of 96 bulk tungsten load-bearing septum replacement plates (LB-SRP). Exposed to the outer strike point for most ITER-relevant, high triangularity configurations, they shall be subject to high power loads (locally 10 MW/m(2) and above). These conditions are demanding, particularly for an inertially cooled design as prescribed. The expected erosion rates are high as well as the risk of melting. especially with transients and repetitive ELM loads. The development is also a real challenge with respect to the inevitable excursions of the tungsten material through the so-called DBTT, ductile-to-brittle transition temperature. A lamella design has been selected to fulfil the requirements with respect to the thermo-mechanical and electromagnetic loads during disruptions (partial derivative T/partial derivative z <= 5 x 10(4) K/m vertically, induction rate of change partial derivative B/partial derivative t <= 100T/s, and I-halo <= 18 kA/module). Care is taken to act on refractory metals solely with compressive forces to a large extent. The dedicated clamping concept is described. Results of a test exposure to an electron beam around 70 MJ/m(2) substantiate the resort to 'high temperature' materials like - among others - high-grade Nimonic (R) alloys, molybdenum or ceramic coatings. (C) 2009 Published by Elsevier B.V
PB - Elsevier Science Sa
UR - ://000268012700044
N1 - ISI Document Delivery No.: 470WITimes Cited: 2Cited Reference Count: 9
U1 - Fusion Physics
U5 - a11a12dc4cb28e215df59fb80f594738
ER -
TY - Generic
T1 - Development and qualification of a bulk tungsten divertor row for JET
Y1 - 2009
A1 - Mertens, P.
A1 - Altmann, H.
A1 - Hirai, T.
A1 - Philipps, V.
A1 - Pintsuk, G.
A1 - Rapp, J.
A1 - Riccardo, V.
A1 - Schweer, B.
A1 - Uytdenhouwen, I.
A1 - Samm, U.
AB - A bulk tungsten divertor row has been developed in the frame of the ITER-like Wall project at JET. It consists of 96 tiles grouped in 48 modules around the torus. The outer strike point is located on those tiles for most of the ITER-relevant, high triangularity plasmas. High power loads (locally up to 10-20 MW/m(2)) and erosion rates are expected, even a risk of melting, especially with the transients or ELM loads. These are demanding conditions for an inertially cooled design as prescribed. A lamella design has been selected for the tungsten, arranged to control the eddy and halo current flows. The lamellae must also withstand high temperature gradients (2200 to 220 degrees C over 40 mm height), without overheating the supporting carrier (600-700 degrees C maximum). As a consequence of the tungsten emissivity, the radiative cooling drops appreciably in comparison with the current CFC tiles, calling for interleaved plasma scenarios in terms of performance. The compromise between shadowing and power handling is discussed, as well as the consequences for operation. Prototypes have been exposed in TEXTOR and in an electron beam facility (JUDITH-2) to the nominal power density of 7 MW/m(2) for 10 s and, in addition, to higher loads leading to surface temperatures above 2000 degrees C. (C) 2009 Published by Elsevier B.V.
PB - Elsevier Science Bv
UR - ://000267747300222
N1 - ISI Document Delivery No.: 467ODTimes Cited: 2Cited Reference Count: 10
U1 - Fusion Physics
U5 - 9c870fcf60163124aa01cdf93272dbe4
ER -
TY - JOUR
T1 - Fusion Energy-Production from a Deuterium-Tritium Plasma in the Jet Tokamak
JF - Nuclear Fusion
Y1 - 1992
A1 - Rebut, P. H.
A1 - Gibson, A.
A1 - Huguet, M.
A1 - Adams, J. M.
A1 - Alper, B.
A1 - Altmann, H.
A1 - Andersen, A.
A1 - Andrew, P.
A1 - Angelone, M.
A1 - Aliarshad, S.
A1 - Baigger, P.
A1 - Bailey, W.
A1 - Balet, B.
A1 - Barabaschi, P.
A1 - Barker, P.
A1 - Barnsley, R.
A1 - Baronian, M.
A1 - Bartlett, D. V.
A1 - Baylor, L.
A1 - Bell, A. C.
A1 - Benali, G.
A1 - Bertoldi, P.
A1 - Bertolini, E.
A1 - Bhatnagar, V.
A1 - Bickley, A. J.
A1 - Binder, D.
A1 - Bindslev, H.
A1 - Bonicelli, T.
A1 - Booth, S. J.
A1 - Bosia, G.
A1 - Botman, M.
A1 - Boucher, D.
A1 - Boucquey, P.
A1 - Breger, P.
A1 - Brelen, H.
A1 - Brinkschulte, H.
A1 - Brooks, D.
A1 - Brown, A.
A1 - Brown, T.
A1 - Brusati, M.
A1 - Bryan, S.
A1 - Brzozowski, J.
A1 - Buchse, R.
A1 - Budd, T.
A1 - Bures, M.
A1 - Businaro, T.
A1 - Butcher, P.
A1 - Buttgereit, H.
A1 - Caldwellnichols, C.
A1 - Campbell, D. J.
A1 - Card, P.
A1 - Celentano, G.
A1 - Challis, C. D.
A1 - Chankin, A. V.
A1 - Cherubini, A.
A1 - Chiron, D.
A1 - Christiansen, J.
A1 - Chuilon, P.
A1 - Claesen, R.
A1 - Clement, S.
A1 - Clipsham, E.
A1 - Coad, J. P.
A1 - Coffey, I. H.
A1 - Colton, A.
A1 - Comiskey, M.
A1 - Conroy, S.
A1 - Cooke, M.
A1 - Cooper, D.
A1 - Cooper, S.
A1 - Cordey, J. G.
A1 - Core, W.
A1 - Corrigan, G.
A1 - Corti, S.
A1 - Costley, A. E.
A1 - Cottrell, G.
A1 - Cox, M.
A1 - Cripwell, P.
A1 - Dacosta, O.
A1 - Davies, J.
A1 - Davies, N.
A1 - de Blank, H.
A1 - De Esch, H.
A1 - Dekock, L.
A1 - Deksnis, E.
A1 - Delvart, F.
A1 - Dennehinnov, G. B.
A1 - Deschamps, G.
A1 - Dickson, W. J.
A1 - Dietz, K. J.
A1 - Dmitrenko, S. L.
A1 - Dmitrieva, M.
A1 - Dobbing, J.
A1 - Doglio, A.
A1 - Dolgetta, N.
A1 - Dorling, S. E.
A1 - Doyle, P. G.
A1 - Duchs, D. F.
A1 - Duquenoy, H.
A1 - Edwards, A.
A1 - Ehrenberg, J.
A1 - Ekedahl, A.
A1 - Elevant, T.
A1 - Erents, S.K.
A1 - Eriksson, L. G.
A1 - Fajemirokun, H.
A1 - Falter, H.
A1 - Freiling, J.
A1 - Freville, F.
A1 - Froger, C.
A1 - Froissard, P.
A1 - Fullard, K.
A1 - Gadeberg, M.
A1 - Galetsas, A.
A1 - Gallagher, T.
A1 - Gambier, D.
A1 - Garribba, M.
A1 - Gaze, P.
A1 - Giannella, R.
A1 - Gill, R. D.
A1 - Girard, A.
A1 - Gondhalekar, A.
A1 - Goodall, D.
A1 - Gormezano, C.
A1 - Gottardi, N. A.
A1 - Gowers, C.
A1 - Green, B. J.
A1 - Grievson, B.
A1 - Haange, R.
A1 - Haigh, A.
A1 - Hancock, C. J.
A1 - Harbour, P. J.
A1 - Hartrampf, T.
A1 - Hawkes, N. C.
A1 - Haynes, P.
A1 - Hemmerich, J. L.
A1 - Hender, T.
A1 - Hoekzema, J.
A1 - Holland, D.
A1 - Hone, M.
A1 - Horton, L.
A1 - How, J.
A1 - Huart, M.
A1 - Hughes, I.
A1 - Hughes, T. P.
A1 - Hugon, M.
A1 - Huo, Y.
A1 - Ida, K.
A1 - Ingram, B.
A1 - Irving, M.
A1 - Jacquinot, J.
A1 - Jaeckel, H.
A1 - Jaeger, J. F.
A1 - Janeschitz, G.
A1 - Jankovicz, Z.
A1 - Jarvis, O. N.
A1 - Jensen, F.
A1 - Jones, E. M.
A1 - Jones, H. D.
A1 - Jones, Lpdf
A1 - Jones, S.
A1 - Jones, T. T. C.
A1 - Junger, J. F.
A1 - Junique, F.
A1 - Kaye, A.
A1 - Keen, B. E.
A1 - Keilhacker, M.
A1 - Kelly, G. J.
A1 - Kerner, W.
A1 - Khudoleev, A.
A1 - Konig, R.
A1 - Konstantellos, A.
A1 - Kovanen, M.
A1 - Kramer, G.
A1 - Kupschus, P.
A1 - Lasser, R.
A1 - Last, J. R.
A1 - Laundy, B.
A1 - Laurotaroni, L.
A1 - Laveyry, M.
A1 - Lawson, K.
A1 - Lennholm, M.
A1 - Lingertat, J.
A1 - Litunovski, R. N.
A1 - Loarte, A.
A1 - Lobel, R.
A1 - Lomas, P.
A1 - Loughlin, M.
A1 - Lowry, C.
A1 - Lupo, J.
A1 - Maas, A. C.
A1 - Machuzak, J.
A1 - Macklin, B.
A1 - Maddison, G.
A1 - Maggi, C. F.
A1 - Magyar, G.
A1 - Mandl, W.
A1 - Marchese, V.
A1 - Marcon, G.
A1 - Marcus, F.
A1 - Mart, J.
A1 - Martin, D.
A1 - Martin, E.
A1 - Martinsolis, R.
A1 - Massmann, P.
A1 - Matthews, G.
A1 - McBryan, H.
A1 - McCracken, G.
A1 - McKivitt, J.
A1 - Meriguet, P.
A1 - Miele, P.
A1 - Miller, A.
A1 - Mills, J.
A1 - Mills, S. F.
A1 - Millward, P.
A1 - Milverton, P.
A1 - Minardi, E.
A1 - Mohanti, R.
A1 - Mondino, P. L.
A1 - Montgomery, D.
A1 - Montvai, A.
A1 - Morgan, P.
A1 - Morsi, H.
A1 - Muir, D.
A1 - Murphy, G.
A1 - Myrnas, R.
A1 - Nave, F.
A1 - Newbert, G.
A1 - Newman, M.
A1 - Nielsen, P.
A1 - Noll, P.
A1 - Obert, W.
A1 - Obrien, D.
A1 - Orchard, J.
A1 - Orourke, J.
A1 - Ostrom, R.
A1 - Ottaviani, M.
A1 - Pain, M.
A1 - Paoletti, F.
A1 - Papastergiou, S.
A1 - Parsons, W.
A1 - Pasini, D.
A1 - Patel, D.
A1 - Peacock, A.
A1 - Peacock, N.
A1 - Pearce, R. J. M.
A1 - Pearson, D.
A1 - Peng, J. F.
A1 - Desilva, R. P.
A1 - Perinic, G.
A1 - Perry, C.
A1 - Petrov, M.
A1 - Pick, M. A.
A1 - Plancoulaine, J.
A1 - Poffe, J. P.
A1 - Pohlchen, R.
A1 - Porcelli, F.
A1 - Porte, L.
A1 - Prentice, R.
A1 - Puppin, S.
A1 - Putvinskii, S.
A1 - Radford, G.
A1 - Raimondi, T.
A1 - Deandrade, M. C. R.
A1 - Reichle, R.
A1 - Reid, J.
A1 - Richards, S.
A1 - Righi, E.
A1 - Rimini, F.
A1 - Robinson, D.
A1 - Rolfe, A.
A1 - Ross, R. T.
A1 - Rossi, L.
A1 - Russ, R.
A1 - Rutter, P.
A1 - Sack, H. C.
A1 - Sadler, G.
A1 - Saibene, G.
A1 - Salanave, J. L.
A1 - Sanazzaro, G.
A1 - Santagiustina, A.
A1 - Sartori, R.
A1 - Sborchia, C.
A1 - Schild, P.
A1 - Schmid, M.
A1 - Schmidt, G.
A1 - Schunke, B.
A1 - Scott, S. M.
A1 - Serio, L.
A1 - Sibley, A.
A1 - Simonini, R.
A1 - Sips, A.C.C.
A1 - Smeulders, P.
A1 - Smith, R.
A1 - Stagg, R.
A1 - Stamp, M.
A1 - Stangeby, P.
A1 - Stankiewicz, R.
A1 - Start, D. F.
A1 - Steed, C. A.
A1 - Stork, D.
A1 - Stott, P.E.
A1 - Stubberfield, P.
A1 - Summers, D.
A1 - Summers, H.
A1 - Svensson, L.
A1 - Tagle, J. A.
A1 - Talbot, M.
A1 - Tanga, A.
A1 - Taroni, A.
A1 - Terella, C.
A1 - Terrington, A.
A1 - Tesini, A.
A1 - Thomas, P. R.
A1 - Thompson, E.
A1 - Thomsen, K.
A1 - Tibone, F.
A1 - Tiscornia, A.
A1 - Trevalion, P.
A1 - Tubbing, B.
A1 - Vanbelle, P.
A1 - Vanderbeken, H.
A1 - Vlases, G.
A1 - von Hellermann, M.
A1 - Wade, T.
A1 - Walker, C.
A1 - Walton, R.
A1 - Ward, D.
A1 - Watkins, M. L.
A1 - Watkins, N.
A1 - Watson, M. J.
A1 - Weber, S.
A1 - Wesson, J.
A1 - Wijnands, T. J.
A1 - Wilks, J.
A1 - Wilson, D.
A1 - Winkel, T.
A1 - Wolf, R.
A1 - Wong, D.
A1 - Woodward, C.
A1 - Wu, Y.
A1 - Wykes, M.
A1 - Young, D.
A1 - Young, I. D.
A1 - Zannelli, L.
A1 - Zolfaghari, A.
A1 - Zwingmann, W.
AB - The paper describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixtures. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasma from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 x 10(17) neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 x 10(17) neutrons, with an accuracy of +/- 7%. The actual fusion amplification factor, Q(DT), was about 0.15. With an optimum tritium concentration, this pulse would have produced a fusion power of almost-equal-to 5 MW and a nominal Q(DT) almost-equal-to 0.46. The same extrapolation for the pure deuterium discharge would have given almost-equal-to 11 MW and a nominal Q(DT) = 1.14, so that the total fusion power (neutrons and alpha-particles) would have exceeded the total losses in the equivalent deuterium-tritium discharge in these transient conditions. Techniques for introducing, tracking, monitoring and recovering tritium were demonstrated to be highly effective: essentially all of the tritium introduced into the neutral beam system and, so far, about two thirds of that introduced into the torus have been recovered.
VL - 32
SN - 0029-5515
U5 - e65831798ed0c55ed964fef6ea71d10c
ER -