Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to the on-going JET experimental campaigns in H, D and T by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.

PB - Tegenlicht Meet Up 040 CY - Eindhoven, Netherlands VL - 59 IS - 8 U1 -FP

U2 -IMT

U5 - 979e9d36956a6fb000f8d9e5060d8989 ER - TY - JOUR T1 - Optimization of ICRH for core impurity control in JET-ILW JF - Nuclear Fusion Y1 - 2016 A1 - Lerche, E. A1 - Goniche, M. A1 - Jacquet, P. A1 - Van Eester, D. A1 - Bobkov, V. A1 - Colas, L. A1 - Giroud, C. A1 - Monakhov, I. A1 - Casson, F. J. A1 - Tsalas, M. A1 - Rimini, F. A1 - Angioni, C. A1 - Baruzzo, M. A1 - Blackman, T. A1 - Brezinsek, S. A1 - Brix, M. A1 - Czarnecka, A. A1 - Crombe, K. A1 - Challis, C. A1 - Dumont, R. A1 - Eriksson, J. A1 - Fedorczak, N. A1 - Graham, M. A1 - Graves, J. P. A1 - Gorini, G. A1 - Hobirk, J. A1 - Joffrin, E. A1 - Johnson, T. A1 - Kazakov, Y. A1 - Kiptily, V. A1 - Krivska, A. A1 - Lennholm, M. A1 - Lomas, P. A1 - Maggi, C. A1 - Mantica, P. A1 - Mathews, G. A1 - Mayoral, M. A1 - Meneses, L. A1 - Mlynar, J. A1 - Monier-Garbet, P. A1 - Nave, M. F. A1 - Noble, C. A1 - Nocente, M. A1 - Nunes, I. A1 - Ongena, J. A1 - Petravich, G. A1 - Petrzilka, V. A1 - Putterich, T. A1 - Reich, M. A1 - Santala, M. A1 - Solano, E. R. A1 - Shaw, A. A1 - Sips, G. A1 - Stamp, M. A1 - Tardocchi, M. A1 - Valisa, M. A1 - JET Contributors AB -Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.

VL - 56 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2015/09/WPJET1PR1528.pdf IS - 3 U1 -FP

U2 -TP

U5 - d602ccdf3e42dd82b551d41759691058 ER - TY - JOUR T1 - Real-time control of ELM and sawtooth frequencies: similarities and differences JF - Nuclear Fusion Y1 - 2016 A1 - Lennholm, M. A1 - Frigione, D. A1 - Graves, J. P. A1 - Beaumont, P. S. A1 - Blackman, T. A1 - Carvalho, I. S. A1 - Chapman, I. A1 - Dumont, R. A1 - Felton, R. A1 - Tsalas, M. A1 - Garzotti, L. A1 - Goniche, M. A1 - Goodyear, A. A1 - Grist, D. A1 - Jachmich, S. A1 - Johnson, T. A1 - Lang, P. A1 - Lerche, E. A1 - de la Luna, E. A1 - Monakhov, I. A1 - Mooney, R. A1 - Morris, J. A1 - M F F Nave A1 - Reich, M. A1 - Rimini, F. A1 - Sips, G. A1 - H Sheikh A1 - Sozzi, C. A1 - JET Contributors AB -ELMs and Sawteeth, located in different parts of the plasma, are similar from a control engineering point of view. Both manifest themselves through quiescent periods interrupted by periodic collapses. For both, large collapses, following long quiescent periods, have detrimental effects while short periods are associated with decreased confinement. Following the installation of the all metal ‘ITER like wall’ on JET, sawteeth and ELMs also play an important role by expelling tungsten from the core and edge of the plasma respectively. Control of tungsten has therefore been added to divertor heat load reduction, NTM avoidance and helium ash removal as reasons for requiring ELM and sawtooth control. It is therefore of interest to implement control systems to maintain the sawtooth and ELM frequencies in the desired ranges. On JET, ELM frequency control uses radial field ‘kicks’ and pellet and gas injection as actuators, while sawtooth control uses ion cyclotron resonance heating (ICRH). JET experiments have, for the first time, established feedback control of the ELM frequency, via real time variation of the injected gas flow [1]. Using this controller in conjunction with pellet injection allows the ELM frequency to be kept as required despite variations in pellet ELM triggering efficiency. JET Sawtooth control experiments have, for the first time, demonstrated that low field side ICRH, as foreseen for ITER, can shorten sawteeth lengthened by central fast ions [2]. The development of ELM and sawtooth control could be key to achieve stable high performance JET discharges with minimal tungsten content. Integrating such schemes into an overall control strategy will be required in future tokamaks and gaining experience on current tokamaks is essential.

VL - 56 UR - http://www.euro-fusionscipub.org/wp-content/uploads/2015/05/WPJET1PR1501.pdf IS - 1 U1 -FP

U2 -PDG

U5 - 49c8929abb0e88d6ddf1d8e1ddde5233 ER - TY - JOUR T1 - Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall JF - Plasma Physics and Controlled Fusion Y1 - 2015 A1 - Graves, J. P. A1 - Lennholm, M. A1 - Chapman, I.T. A1 - Lerche, E. A1 - Reich, M. A1 - Alper, B. A1 - Bobkov, V. A1 - Dumont, R. A1 - Faustin, J. M. A1 - Jacquet, P. A1 - Jaulmes, F. A1 - Johnson, T. A1 - Keeling, D. L. A1 - Liu, Y. Q. A1 - Nicolas, T. A1 - Tholerus, S. A1 - Blackman, T. A1 - Carvalho, I. S. A1 - Coelho, R. A1 - Van Eester, D. A1 - Felton, R. A1 - Goniche, M. A1 - Kiptily, V. A1 - Monakhov, I. A1 - M F F Nave A1 - Perez von Thun, C. A1 - Sabot, R. A1 - Sozzi, C. A1 - Tsalas, M. AB - New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions. VL - 57 IS - 1 U1 - FP U2 - CPP-HT U5 - 350e787a0d57db2f73d24baa18668ef0 ER - TY - JOUR T1 - Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment JF - Nuclear Fusion Y1 - 2014 A1 - Citrin, J. A1 - Jenko, F. A1 - Mantica, P. A1 - Told, D. A1 - Bourdelle, C. A1 - Dumont, R. A1 - J. Garcia A1 - Haverkort, J. W. A1 - Hogeweij, G. M. D. A1 - Johnson, T. A1 - Pueschel, M. J. AB -Recent experimental observations at JET show evidence of reduced ion temperature profile stiffness. An extensive set of nonlinear gyrokinetic simulations are performed based on the experimental discharges, investigating the physical mechanism behind the observations. The impact on the ion heat flux of various parameters that differ within the data-set are explored. These parameters include the safety factor, magnetic shear, toroidal flow shear, effect of rotation on the magnetohydrodynamic equilibrium, R/L-n, beta(e), Z(eff), T-e/T-i, and the fast-particle content. While previously hypothesized to be an important factor in the stiffness reduction, the combined effect of toroidal flow shear and low magnetic shear is not predicted by the simulations to lead to a significant reduction in ion heat flux, due both to an insufficient magnitude of flow shear and significant parallel velocity gradient destabilization. It is however found that nonlinear electromagnetic effects due to both thermal and fast-particle pressure gradients, even at low beta(e), can significantly reduce the ion heat flux, and is a key factor in explaining the experimental observations. A total of four discharges are examined, at both inner and outer radii. For all cases studied, the simulated and experimental ion heat flux values agree within reasonable variations of input parameters around the experimental uncertainties.

VL - 54 SN - 0029-5515; 1741-4326 IS - 2 U1 -FP

U2 -CPP-HT

U5 - ba87938e30199199a6a17bf4846326c5 ER - TY - JOUR T1 - Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments (vol 53, 124019, 2011) JF - Plasma Physics and Controlled Fusion Y1 - 2012 A1 - Lerche, E. A1 - Van Eester, D. A1 - Ongena, J. A1 - Mayoral, M. L. A1 - Laxaback, M. A1 - Rimini, F. A1 - Argouarch, A. A1 - Beaumont, P. A1 - Blackman, T. A1 - Bobkov, V. A1 - Brennan, D. A1 - Brett, A. A1 - Calabro, G. A1 - Cecconello, M. A1 - Coffey, I. A1 - Colas, L. A1 - Coyne, A. A1 - Crombe, K. A1 - Czarnecka, A. A1 - Dumont, R. A1 - Durodie, F. A1 - Felton, R. A1 - Frigione, D. A1 - Johnson, M. G. A1 - Giroud, C. A1 - Gorini, G. A1 - Graham, M. A1 - Hellesen, C. A1 - Hellsten, T. A1 - Huygen, S. A1 - Jacquet, P. A1 - Johnson, T. A1 - Kiptily, V. A1 - Knipe, S. A1 - Krasilnikov, A. A1 - Lamalle, P. A1 - Lennholm, M. A1 - Loarte, A. A1 - Maggiora, R. A1 - Maslov, M. A1 - Messiaen, A. A1 - Milanesio, D. A1 - Monakhov, I. A1 - Nightingale, M. A1 - Noble, C. A1 - Nocente, M. A1 - Pangioni, L. A1 - Proverbio, I. A1 - Sozzi, C. A1 - Stamp, M. A1 - Studholme, W. A1 - Tardocchi, M. A1 - Versloot, T. W. A1 - Vdovin, V. A1 - Vrancken, M. A1 - Whitehurst, A. A1 - Wooldridge, E. A1 - Zoita, V. VL - 54 SN - 0741-3335 IS - 6 U1 - FP U2 - PDG U5 - a4876ad5642c6996c71aace8ddbcc77a ER - TY - JOUR T1 - Feedback control of the sawtooth period through real time control of the ion cyclotron resonance frequency JF - Nuclear Fusion Y1 - 2011 A1 - Lennholm, M. A1 - Blackman, T. A1 - Chapman, I.T. A1 - Eriksson, L. G. A1 - Graves, J. P. A1 - Howell, D. F. A1 - de M. Baar A1 - Calabro, G. A1 - Dumont, R. A1 - Graham, M. A1 - Jachmich, S. A1 - Mayoral, M. L. A1 - Sozzi, C. A1 - Stamp, M. A1 - Tsalas, M. A1 - P. de Vries KW - CURRENT DRIVE KW - JET TOKAMAK KW - JOINT EUROPEAN TORUS KW - LIMITS KW - PHYSICS KW - RANGE KW - SAWTEETH KW - STABILIZATION AB -Modification of the sawtooth period through ion cyclotron resonance frequency (ICRF) heating and current drive has been demonstrated in a number of experiments. The effect has been seen to depend critically on the location of the ICRF absorption region with respect to the q = 1 flux surface. Consequently, for ICRF to be a viable tool for sawtooth control, one must be able to control the ICRF absorption location in real time so as to follow variations in the location of the q = 1 surface. To achieve this, the JET ICRF system has been modified to allow the JET real time central controller to control the frequency of the ICRF generators. An algorithm for real time determination of the sawtooth period has been developed and a closed loop controller, which modifies the frequency of the ICRF generators to bring the measured sawtooth period to the desired reference value, has been implemented. This paper shows the first experimental demonstration of closed loop sawtooth period control by real time variation of the ICRF wave frequency.

VL - 51 SN - 0029-5515 IS - 7 N1 - ISI Document Delivery No.: 781LITimes Cited: 0Cited Reference Count: 33 U1 -FP

U2 -TP

U5 - 3a300f8d24d4120bf95271a0e659cadb ER - TY - JOUR T1 - Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments JF - Plasma Physics and Controlled Fusion Y1 - 2011 A1 - Lerche, E. A1 - Van Eester, D. A1 - Ongena, J. A1 - Mayoral, M. L. A1 - Laxaback, M. A1 - Rimini, F. A1 - Argouarch, A. A1 - Beaumont, P. A1 - Blackman, T. A1 - Bobkov, V. A1 - Brennan, D. A1 - Brett, A. A1 - Calabro, G. A1 - Cecconello, M. A1 - Coffey, I. A1 - Colas, L. A1 - Coyne, A. A1 - Crombe, K. A1 - Czarnecka, A. A1 - Dumont, R. A1 - Durodie, F. A1 - Felton, R. A1 - Frigione, D. A1 - Johnson, M. G. A1 - Giroud, C. A1 - Gorini, G. A1 - Graham, M. A1 - Hellesen, C. A1 - Hellsten, T. A1 - Huygen, S. A1 - Jacquet, P. A1 - Johnson, T. A1 - Kiptily, V. A1 - Knipe, S. A1 - Krasilnikov, A. A1 - Lamalle, P. A1 - Lennholm, M. A1 - Loarte, A. A1 - Maggiora, R. A1 - Maslov, M. A1 - Messiaen, A. A1 - Milanesio, D. A1 - Monakhov, I. A1 - Nightingale, M. A1 - Noble, C. A1 - Nocente, M. A1 - Pangioni, L. A1 - Proverbio, I. A1 - Sozzi, C. A1 - Stamp, M. A1 - Studholme, W. A1 - Tardocchi, M. A1 - Versloot, T. W. A1 - Vdovin, V. A1 - Vrancken, M. A1 - Whitehurst, A. A1 - Wooldridge, E. A1 - Zoita, V. KW - DESIGN KW - ICRF ANTENNAS KW - MODE CONVERSION KW - PLASMAS KW - Sawtooth KW - SCENARIOS KW - SYSTEM KW - TOKAMAK AB -In the past years, one of the focal points of the JET experimental programme was on ion-cyclotron resonance heating (ICRH) studies in view of the design and exploitation of the ICRH system being developed for ITER. In this brief review, some of the main achievements obtained in JET in this field during the last 5 years will be summarized. The results reported here include important aspects of a more engineering nature, such as (i) the appropriate design of the RF feeding circuits for optimal load resilient operation and (ii) the test of a compact high-power density antenna array, as well as RF physics oriented studies aiming at refining the numerical models used for predicting the performance of the ICRH system in ITER. The latter include (i) experiments designed for improving the modelling of the antenna coupling resistance under various plasma conditions and (ii) the assessment of the heating performance of ICRH scenarios to be used in the non-active operation phase of ITER.

VL - 53 SN - 0741-3335 IS - 12 N1 - ISI Document Delivery No.: 870BLTimes Cited: 0Cited Reference Count: 43Part 1-2 U1 -FP

U2 -PDG

U5 - 5271f643f9b6df31138d568a0bcdbc8b ER - TY - JOUR T1 - TORE SUPRA Team Mmembers 1988-2008 JF - Fusion Science and Technology Y1 - 2009 A1 - Abgrall, R. A1 - Achard, M. H. A1 - Adam, J. A1 - Agarici, G. A1 - Agostini, E. A1 - Airaj, M. A1 - Albajar-Vinas, F. A1 - Allegretti, L. A1 - Allibert, J. P. A1 - Alliez, J. C. A1 - Allouche, A. A1 - Andreoletti, J. A1 - Ane, J. M. A1 - Angelino, P. A1 - Aniel, T. A1 - Antar, G. A1 - Arcis, N. A1 - Argouarch, A. A1 - Arnas, C. A1 - Arnoux, G. A1 - Arslanbekov, R. A1 - Artaud, J. F. A1 - Asp, E. A1 - Assas, S. A1 - Atttuel, G. A1 - Aymar, R. A1 - Azeroual, A. A1 - Balme, S. A1 - Barana, O. A1 - Bareyt, B. A1 - Basiuk, V. A1 - Basko, M. A1 - Bayetti, P. A1 - Baylor, L. A1 - Beaumont, B. A1 - Becherer, R. A1 - Becoulet, A. A1 - Becoulet, M. A1 - Begrambekov, L. A1 - Benkadda, S. A1 - Benoit, F. A1 - Bergeaud, V. A1 - Berger-By, G. A1 - Berio, S. A1 - Bernascolle, P. A1 - Bernier, N. A1 - Berroukeche, M. A1 - Bertrand, B. A1 - Bessette, D. A1 - Beyer, P. A1 - Bibet, P. A1 - Bizzaro, J. A1 - Blanchard, P. A1 - Blum, J. A1 - Boddeker, S. A1 - Boilson, D. A1 - Mardion, G. B. A1 - Bonnel, P. A1 - Bonnin, X. A1 - Boscary, J. A1 - Bosia, G. A1 - Bottereau, J. M. A1 - Bottiglioni, F. A1 - Bottollier-Curtet, H. A1 - Bouchand, C. A1 - Bouligand, G. A1 - Bouquey, F. A1 - Bourdelle, C. A1 - Bregeon, R. A1 - Bremond, F. A1 - Bremond, S. A1 - Breton, C. A1 - Breton, M. A1 - Brosset, C. A1 - Brugnetti, R. A1 - Bruneau, J. L. A1 - Bucalossi, J. A1 - Budny, R. V. A1 - Buravand, Y. A1 - Bush, C. A1 - Bussac, M. N. A1 - Cambe, A. A1 - Capes, H. A1 - Capitain, J. J. A1 - Cara, P. A1 - Carbonnier, J. L. A1 - Carpentier, S. A1 - Carrasco, J. A1 - Casati, A. A1 - Chaibi, O. A1 - Chamouard, C. A1 - Chantant, M. A1 - Chappuis, P. A1 - Chatain, D. A1 - Chatelier, E. A1 - Chatelier, M. A1 - Chatenet, J. H. A1 - Chen, X. P. A1 - Cherigier, L. A1 - Chevet, G. A1 - Chiarazzo, L. A1 - Ciazynski, D. A1 - Ciraolo, G. A1 - Cismondi, F. A1 - Clairet, F. A1 - Clary, J. A1 - Clement, C. A1 - Colas, L. A1 - Commaux, N. A1 - Corbel, E. A1 - Cordier, J. J. A1 - Corre, Y. A1 - Costanzo, L. A1 - Cote, A. A1 - Coulon, J. P. A1 - Courtois, L. A1 - Courtois, X. A1 - Couturier, B. A1 - Crenn, J. P. A1 - Cristofani, P. A1 - Crouseilles, N. A1 - Czarny, O. A1 - Rosa, P. D. A1 - Darbos, C. A1 - Darmet, G. A1 - Davi, M. A1 - Daviot, R. A1 - De Esch, H. A1 - De Gentile, B. A1 - De Haas, J. C. A1 - De La Cal, E. A1 - De Michelis, C. A1 - Deck, C. A1 - Decker, J. A1 - Decool, P. A1 - Degond, P. A1 - Dejarnac, R. A1 - Delchambre, E. A1 - Delmas, E. A1 - Delpech, L. A1 - Demarthe, H. A1 - Dentan, M. A1 - Depret, G. A1 - Deschamps, P. A1 - Desgranges, C. A1 - Devynck, P. A1 - Doceul, L. A1 - Dolgetta, N. A1 - Doloc, C. A1 - Dong, Y. A1 - Dore, P. A1 - Douai, D. A1 - Dougnac, H. A1 - Drawin, H. W. A1 - Druaux, J. A1 - Druetta, M. A1 - Dubois, F. A1 - Dubois, M. A1 - Dubuit, N. A1 - Duchateau, J. L. A1 - de Wit, T. D. A1 - Dufour, E. A1 - Dumont, R. A1 - Dunand, G. A1 - Dupas, L. A1 - Duran, Y. A1 - Durocher, A. A1 - Edery, D. A1 - Ekedahl, A. A1 - Elbeze, D. A1 - Eriksson, L. G. A1 - Escande, D. A1 - Escarguel, A. A1 - Escourbiac, F. A1 - Evans, T. A1 - Faisse, F. A1 - Falchetto, G. A1 - Fall, T. A1 - Farge, M. A1 - Farjon, J. L. A1 - Faudot, E. A1 - Fazilleau, P. A1 - Fedorczak, N. A1 - Fenzi-Bonizec, C. A1 - Ferron, J. R. A1 - Fidone, I. A1 - Figarella, C. A1 - Fleurence, E. A1 - Fleury, I. A1 - Fois, M. A1 - Forrest, C. A1 - Foster, C. A. A1 - Fouquet, S. A1 - Fourment, C. A1 - Fraboulet, D. A1 - Francois, P. A1 - Franel, B. A1 - Frigione, D. A1 - Froissard, P. A1 - Fubiani, G. A1 - Fuchs, V. A1 - Fumelli, M. A1 - Gagey, B. A1 - Galindo, V. A1 - Gambier, D. A1 - Garampon, L. A1 - Garbet, X. A1 - Garbil, R. A1 - J. Garcia A1 - Gardarein, J. L. A1 - Gargiulo, L. A1 - Garibaldi, P. A1 - Garin, P. A1 - Gauthier, E. A1 - Geraud, A. A1 - Gerbaud, T. A1 - Gervais, F. A1 - Geynet, M. A1 - Ghendrih, P. A1 - Gianakon, T. A1 - Giannella, R. A1 - Gil, C. A1 - Girard, J. P. A1 - Giruzzi, G. A1 - Godbert-Mouret, L. A1 - Gomez, P. A1 - Goniche, M. A1 - Gordeev, A. A1 - Granata, G. A1 - Grandgirard, V. A1 - Gravier, R. A1 - Gravil, B. A1 - Gregoire, M. A1 - Gregoire, S. A1 - Grelot, P. A1 - Gresillon, D. A1 - Grisolia, C. A1 - Gros, G. A1 - Grosman, A. A1 - Grua, P. A1 - Guerin, O. A1 - Guigon, R. A1 - Guilhem, D. A1 - Guillerminet, B. A1 - Guirlet, R. A1 - Guiziou, L. A1 - Gunn, J. A1 - Hacquin, S. A1 - Harris, J. A1 - Haste, G. A1 - Hatchressian, J. C. A1 - Hemsworth, R. A1 - Hennequin, P. A1 - Hennion, F. A1 - Hennion, V. A1 - Henry, D. A1 - Hernandez, C. A1 - Hertout, P. A1 - Hess, W. A1 - Hesse, M. A1 - Heuraux, S. A1 - Hillairet, J. A1 - Hoang, G. T. A1 - Hogan, J. A1 - Hong, S. H. A1 - Honore, C. A1 - Horton, L. A1 - Horton, W. W. A1 - Houlberg, W. A. A1 - Hourtoule, J. A1 - Houry, M. A1 - Houy, P. A1 - How, J. A1 - Hron, M. A1 - Hutter, T. A1 - Huynh, P. A1 - Huysmans, G. A1 - Idmtal, J. A1 - Imbeaux, F. A1 - Isler, R. A1 - Jaben, C. A1 - Jacquinot, J. A1 - Jacquot, C. A1 - Jager, B. A1 - Jaunet, M. A1 - Javon, C. A1 - Jelea, A. A1 - Jequier, F. A1 - Jie, Y. X. A1 - Jimenez, R. A1 - Joffrin, E. A1 - Johner, J. A1 - Jourd'heuil, L. A1 - Journeaux, J. Y. A1 - Joyer, P. A1 - Ju, M. A1 - Jullien, F. A1 - Junique, F. A1 - Kaye, S. M. A1 - Kazarian, F. A1 - Khodja, H. A1 - Klepper, C. A1 - Kocan, M. A1 - Koski, J. A1 - Krivenski, V. A1 - Krylov, A. A1 - Kupfer, K. A1 - Kuus, H. A1 - Labit, B. A1 - Laborde, L. A1 - Lacroix, B. A1 - Ladurelle, L. A1 - Lafon, D. A1 - Lamaison, V. A1 - Laporte, P. A1 - Lasalle, J. A1 - Latu, G. A1 - Laugier, F. A1 - Laurent, L. A1 - Lausenaz, Y. A1 - Laviron, C. A1 - Layet, J. M. A1 - Le Bris, A. A1 - Le Coz, F. A1 - Le Niliot, C. A1 - Le Bris, A. A1 - Leclert, G. A1 - Lecoustey, P. A1 - Ledyankinc, A. A1 - Leloup, C. A1 - Lennholm, M. A1 - Leroux, F. A1 - Li, Y. Y. A1 - Libeyre, P. A1 - Linez, F. A1 - Lipa, M. A1 - Lippmann, S. A1 - X. Litaudon A1 - Liu, W. D. A1 - Loarer, T. A1 - Lott, F. A1 - Lotte, P. A1 - Lowry, C. A1 - Luciani, J. F. A1 - Lutjens, H. A1 - Luty, J. A1 - Lutz, T. A1 - Lyraud, C. A1 - Maas, A. A1 - Macor, A. A1 - Madeleine, S. A1 - Magaud, P. A1 - Maget, P. A1 - Magne, R. A1 - Mahdavi, A. A1 - Mahe, F. A1 - J. Mailloux A1 - Mandl, W. A1 - Manenc, L. A1 - Marandet, Y. A1 - Marbach, G. A1 - Marechal, J. L. A1 - Martin, C. A1 - Martin, G. A1 - Martin, V. A1 - Martinez, A. A1 - Martins, J. P. A1 - Maschke, E. A1 - Masse, L. A1 - Masset, R. A1 - Massmann, P. A1 - Mattioli, M. A1 - Mayaux, G. A1 - Mayoral, M. L. A1 - Mazon, D. A1 - McGrath, R. A1 - Mercier, C. A1 - Meslin, B. A1 - Meunier, L. A1 - Meyer, O. A1 - Michelot, Y. A1 - Million, L. A1 - Millot, P. A1 - Minguella, G. A1 - Minot, F. A1 - Mioduszewski, P. A1 - Misguich, J. H. A1 - Miskane, F. A1 - Missirlian, M. A1 - Mitteau, R. A1 - Moerel, F. A1 - Mollard, P. A1 - Monakhov, I. A1 - Moncada, V. A1 - Moncel, L. A1 - Monier-Garbet, P. A1 - Moreau, D. A1 - Moreau, F. A1 - Moreau, P. A1 - Morera, J. P. A1 - Moret, J. M. A1 - Moulin, B. A1 - Moulin, D. A1 - Mourgues, F. A1 - Moustier, M. A1 - Nakach, R. A1 - Nannini, M. A1 - Nanobashvili, I. A1 - Nardon, E. A1 - Navarra, P. A1 - Nehme, H. A1 - Nguyen, C. A1 - Nguyen, F. A1 - Nicollet, S. A1 - Nygren, R. A1 - Ogorodnikova, O. A1 - Olivain, J. A1 - Orlandelli, P. A1 - Ottaviani, M. A1 - Ouvrier-Buffet, P. A1 - Ouyang, Z. A1 - Owen, L. A1 - Pacella, D. A1 - Pain, M. A1 - Pamela, J. A1 - Pamela, S. A1 - Panek, R. A1 - Panzarella, A. A1 - Paris, R. A1 - Parisot, T. A1 - Park, S. H. A1 - Parlange, F. A1 - Parrat, H. A1 - Pastor, G. A1 - Pastor, P. A1 - Pastor, T. A1 - Patris, R. A1 - Paume, M. A1 - Payan, J. A1 - Pecquet, A. L. A1 - Pegourie, B. A1 - Petrov, Y. A1 - Petrzilka, V. A1 - Peysson, Y. A1 - Piat, D. A1 - Picchiottino, J. M. A1 - Pierre, J. A1 - Platz, P. A1 - Portafaix, C. A1 - Prou, M. A1 - Pugno, R. A1 - Putchy, L. A1 - Qin, C. M. A1 - Quallis, L. A1 - Quemeneur, A. A1 - Quet, P. A1 - Rabaglino, E. A1 - Raharijaona, J. J. A1 - Ramette, J. A1 - Ravenel, N. A1 - Rax, J. M. A1 - Reichle, R. A1 - Renard, B. A1 - Renner, H. A1 - Reuss, J. D. A1 - Reux, C. A1 - Reverdin, C. A1 - Rey, G. A1 - Reynaud, P. A1 - Riband, P. H. A1 - Richou, M. A1 - Rigollet, F. A1 - Rimini, F. A1 - Riquet, D. A1 - Rochard, F. A1 - Rodriguez, L. A1 - Romanelli, M. A1 - Romannikov, A. A1 - Rosanvallon, S. A1 - Roth, J. A1 - Rothan, B. A1 - Roubin, J. P. A1 - Roubin, P. A1 - Roupillard, G. A1 - Roussel, P. A1 - Ruggieri, R. A1 - Sabathier, F. A1 - Sabbagh, S. A. A1 - Sabot, R. A1 - Saha, S. K. A1 - Saint-Laurent, F. A1 - Salasca, S. A1 - Salmon, T. A1 - Salvador, J. A1 - Samaille, F. A1 - Samain, A. A1 - Santagiustina, A. A1 - Saoutic, B. A1 - Sarazin, Y. A1 - Schild, T. A1 - Schlosser, J. A1 - Schneider, M. A1 - Schneider, K. A1 - Schunke, B. A1 - Schwander, F. A1 - Schwob, J. L. A1 - Sebelin, E. A1 - Segui, J. L. A1 - Seigneur, A. A1 - Shepard, T. A1 - Shigin, P. A1 - Signoret, J. A1 - Simoncini, J. A1 - Simonet, F. A1 - Simonin, A. A1 - Sirinelli, A. A1 - Sledziewski, Z. A1 - Smits, F. A1 - Soler, K. A1 - Sonato, P. G. A1 - Song, S. D. A1 - Sonnendrucker, E. A1 - Sourd, F. A1 - Spitz, P. A1 - Spuig, P. A1 - Stamm, R. A1 - Stephan, Y. A1 - Stirling, W. A1 - Stockel, J. A1 - Stott, P. A1 - Sthal, K. S. A1 - Surle, F. A1 - Svensson, L. A1 - Tachon, J. A1 - Talvard, M. A1 - Tamain, P. A1 - Tavian, L. A1 - Tena, M. A1 - Theis, J. M. A1 - Thomas, C. E. A1 - Thomas, P. A1 - Thonnat, M. A1 - Tobin, S. A1 - Tokar, M. A1 - Tonon, G. A1 - Torossian, A. A1 - Torre, A. A1 - Trainham, R. C. A1 - Travere, J. M. A1 - Tresset, G. A1 - Trier, E. A1 - Truc, A. A1 - Tsitrone, E. A1 - Turck, B. A1 - Turco, F. A1 - Turlur, S. A1 - Uckan, T. A1 - Udintsev, V. A1 - Urguijo, G. A1 - Utzel, N. A1 - Vallet, J. C. A1 - Valter, J. A1 - Van Houtte, D. A1 - Van Rompuy, T. A1 - Vatry, A. A1 - Verga, A. A1 - Vermare, L. A1 - Vezard, D. A1 - Viallet, H. A1 - Villecroze, F. A1 - Villedieu, E. A1 - Villegas, D. A1 - Vincent, E. A1 - Voitsekovitch, I. A1 - von Hellermann, M. A1 - Voslamber, D. A1 - Voyer, D. A1 - Vulliez, K. A1 - Wachter, C. A1 - Wagner, T. A1 - Waller, V. A1 - Wang, G. A1 - Wang, Z. A1 - Watkins, J. A1 - Weisse, J. A1 - White, R. A1 - Wijnands, T. A1 - Witrant, E. A1 - Worms, J. A1 - Xiao, W. A1 - Yu, D. A1 - Zabeo, L. A1 - Zabiego, M. A1 - Zani, L. A1 - Zhuang, G. A1 - Zou, X. L. A1 - Zucchi, E. A1 - Zunino, K. A1 - Zwingmann, W. VL - 56 SN - 1536-1055 UR -